[Математика] Закон больших чисел и то, чем он не является
Автор
Сообщение
news_bot ®
Стаж: 6 лет 9 месяцев
Сообщений: 27286
О законе больших чисел (збч) написано много (например, на английском, тут и тут, также [1]). В этом тексте я попробую рассказать о том, чем закон больших чисел не является – об ошибочном восприятии этого закона и потенциальных ловушках, спрятанных в математических формулировках.
Начнем с того, что же такое закон больших чисел. Неформально, это математическая теорема о том, что «вероятность отклонений среднего по выборке от математческого ожидания мала» и что «эта вероятность стремится к нулю при увеличении выборки». Совсем неформально, теорема утверждает, что с мы можем быть в достаточной степени уверены, что среднее по нашей выборке достаточно близко к «настоящему» среднему и таким образом хорошо его описывает. Разумеется, предполагается наличие традиционного статистического «багажа» — наши наблюдения из выборки должны описывать одно и то же явление, они должны быть независимы, и мысль о том, что есть некоторое «настоящее» распределение с «настоящим» средним, не должна вызывать у нас существенных сомнений.
При формулировке закона мы говорим «среднее по выборке», и все что может быть математически записано как такое среднее, попадает под действие закона. Например, доля событий в общей массе может быть записана как среднее, — нам достаточно записать наличие события как «1» и отсутствие как «0». В итоге среднее будет равно частоте и частота должна быть близка к теоретическому среднему. Именно поэтому по ожидаем, что доля «орлов» при подрасывании идеальной монеты будет близка к ½.
Рассмотрим теперь ловушки и ошибочные представления об этом законе.
Во-первых, ЗБЧ не всегда верен. Это всего лишь математическая теорема с «входными данными» — предположениями. Если предположения неверны, то и закон не обязан выполняться. Например, это так если наблюдения зависимы, или если нет уверенности в том, что «настоящее» среднее существует и конечно, или если изучаемое явление меняется во времени и мы не можем утверждать, что мы наблюдаем одну и ту же величину. По правде говоря, в определенной степени ЗБЧ верен и в этих случаях, например, для слабокоррелированных наблюдений или даже в том случае когда наблюдаемая величина меняется во времени. Однако, для корректного приложения этого к непосредственной реальности нужен хорошо тренированный специалист-математик.
Во-вторых, кажется верным, что ЗБЧ утверждает «среднее по выборке близко к настоящему среднему». Однако, такое утверждаение остается не полным: надо обязательно добавлять «с высокой долей вероятности; и эта вероятность всегда меньше 100%».
В-третьих, хочется сформулировать ЗБЧ как «среднее по выборке сходится к настоящему среднему при неограниченном росте выборки». Однако, это неверно, потому что среднее по выборке вообще никуда не сходится, так как оно случайное и остается таковым для любого размера выборки. Например, даже если подбросить симметричную монету миллион раз, все равное есть шанс, что доля орлов будет далека от ½ или даже равна нулю. В определенном смысле, всегда есть шанс получить что-то необычное. Надо признать, однако, что наша интуиция все-таки подсказыает нам что ЗБЧ должен описывать какую-то сходмость, и так есть на самом деле. Только «сходится» не среднее, а «вероятность отклонения выборочного среднего от его истинного значения», и сходится к нулю. Так как эта идея интуитивно очень удобна («шансы увидеть что-то необычное стремятся к нулю»), матетматики придумали для этого особый тип сходимости – «сходимость по вероятности».
В-четвертых, ЗБЧ не говорит ничего о том, когда выборочное среднее можно считать достаточно близким к теоретическому. Закон больших чисел только постулирует существование определенного явления, он ничего не говорит о том, когда его можно использовать. Получается, на ключевой вопрос с точки зрения практики — «могу ли я использовать ЗБЧ для моей выборки размера n?», закон больших чисел не отвечает. Ответы на эти вопросы дают другие теоремы, например, Центральная Предельная Теорема. Она дает представление о том, в каких пределах выборочное среднее может отклонятся от своего истинного значения.
В заключение следует отметить центральную роль ЗБЧ в статистике и теории вероятностей. История этого закона началась тогда, когда ученые заметили, что частоты некоторых повторяющихся явлений стабилизируются и перестают существенно менятся, при условии многократного повторения опыта или наблюдения. Поразительным было то, что эта «стабилизация частот» наблюдалась для совершенно несвязаных явления – от бросания игральной кости до урожайности в сельском хозяйстве, указывая на возможное существование «закона природы». Интересно, что этот закон природы оказался частью математики, а не физики, химии или биологии, как обычно бывает с законами природы.
[1] Illustrating the Law of Large Numbers (and Confidence Intervals) Jeffrey D Blume & Richard M Royall
===========
Источник:
habr.com
===========
Похожие новости:
- [История IT, Математика, Программирование] В пещерах этого не было
- [Занимательные задачки, Профессиональная литература, Читальный зал] Как же всё-таки не ошибаться?
- [Алгоритмы, Обработка изображений, Математика, Машинное обучение] Рубрика «Читаем статьи за вас». Июль — август 2020 года
- [Алгоритмы, Математика, Машинное обучение] Курсы Computer Science клуба теперь онлайн
- [Математика, Научно-популярное] Новый алгоритм проверки пересечений в графах прятался на виду (перевод)
- [C++, Алгоритмы, Математика] Кривые Безье. Немного о пересечениях и как можно проще
- [Математика, Читальный зал, Научно-популярное, Игры и игровые приставки] Географические развлечения
- [Алгоритмы, Математика, Научно-популярное] Исследователи смогли преодолеть барьер в улучшении решения задачи коммивояжера
- [Математика, Научно-популярное, Физика] Как математический «фокус» спас физику частиц (перевод)
- [Математика, Учебный процесс в IT, Научно-популярное] Второе место на Международной математической олимпиаде 2020
Теги для поиска: #_matematika (Математика), #_matematika (математика), #_matematika_na_paltsah (математика на пальцах), #_matematicheskaja_statistika (математическая статистика), #_teorija_verojatnostej (теория вероятностей), #_teorija_verojatnosti (теория вероятности), #_matematika (
Математика
)
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 19:13
Часовой пояс: UTC + 5
Автор | Сообщение |
---|---|
news_bot ®
Стаж: 6 лет 9 месяцев |
|
О законе больших чисел (збч) написано много (например, на английском, тут и тут, также [1]). В этом тексте я попробую рассказать о том, чем закон больших чисел не является – об ошибочном восприятии этого закона и потенциальных ловушках, спрятанных в математических формулировках. Начнем с того, что же такое закон больших чисел. Неформально, это математическая теорема о том, что «вероятность отклонений среднего по выборке от математческого ожидания мала» и что «эта вероятность стремится к нулю при увеличении выборки». Совсем неформально, теорема утверждает, что с мы можем быть в достаточной степени уверены, что среднее по нашей выборке достаточно близко к «настоящему» среднему и таким образом хорошо его описывает. Разумеется, предполагается наличие традиционного статистического «багажа» — наши наблюдения из выборки должны описывать одно и то же явление, они должны быть независимы, и мысль о том, что есть некоторое «настоящее» распределение с «настоящим» средним, не должна вызывать у нас существенных сомнений. При формулировке закона мы говорим «среднее по выборке», и все что может быть математически записано как такое среднее, попадает под действие закона. Например, доля событий в общей массе может быть записана как среднее, — нам достаточно записать наличие события как «1» и отсутствие как «0». В итоге среднее будет равно частоте и частота должна быть близка к теоретическому среднему. Именно поэтому по ожидаем, что доля «орлов» при подрасывании идеальной монеты будет близка к ½. Рассмотрим теперь ловушки и ошибочные представления об этом законе. Во-первых, ЗБЧ не всегда верен. Это всего лишь математическая теорема с «входными данными» — предположениями. Если предположения неверны, то и закон не обязан выполняться. Например, это так если наблюдения зависимы, или если нет уверенности в том, что «настоящее» среднее существует и конечно, или если изучаемое явление меняется во времени и мы не можем утверждать, что мы наблюдаем одну и ту же величину. По правде говоря, в определенной степени ЗБЧ верен и в этих случаях, например, для слабокоррелированных наблюдений или даже в том случае когда наблюдаемая величина меняется во времени. Однако, для корректного приложения этого к непосредственной реальности нужен хорошо тренированный специалист-математик. Во-вторых, кажется верным, что ЗБЧ утверждает «среднее по выборке близко к настоящему среднему». Однако, такое утверждаение остается не полным: надо обязательно добавлять «с высокой долей вероятности; и эта вероятность всегда меньше 100%». В-третьих, хочется сформулировать ЗБЧ как «среднее по выборке сходится к настоящему среднему при неограниченном росте выборки». Однако, это неверно, потому что среднее по выборке вообще никуда не сходится, так как оно случайное и остается таковым для любого размера выборки. Например, даже если подбросить симметричную монету миллион раз, все равное есть шанс, что доля орлов будет далека от ½ или даже равна нулю. В определенном смысле, всегда есть шанс получить что-то необычное. Надо признать, однако, что наша интуиция все-таки подсказыает нам что ЗБЧ должен описывать какую-то сходмость, и так есть на самом деле. Только «сходится» не среднее, а «вероятность отклонения выборочного среднего от его истинного значения», и сходится к нулю. Так как эта идея интуитивно очень удобна («шансы увидеть что-то необычное стремятся к нулю»), матетматики придумали для этого особый тип сходимости – «сходимость по вероятности». В-четвертых, ЗБЧ не говорит ничего о том, когда выборочное среднее можно считать достаточно близким к теоретическому. Закон больших чисел только постулирует существование определенного явления, он ничего не говорит о том, когда его можно использовать. Получается, на ключевой вопрос с точки зрения практики — «могу ли я использовать ЗБЧ для моей выборки размера n?», закон больших чисел не отвечает. Ответы на эти вопросы дают другие теоремы, например, Центральная Предельная Теорема. Она дает представление о том, в каких пределах выборочное среднее может отклонятся от своего истинного значения. В заключение следует отметить центральную роль ЗБЧ в статистике и теории вероятностей. История этого закона началась тогда, когда ученые заметили, что частоты некоторых повторяющихся явлений стабилизируются и перестают существенно менятся, при условии многократного повторения опыта или наблюдения. Поразительным было то, что эта «стабилизация частот» наблюдалась для совершенно несвязаных явления – от бросания игральной кости до урожайности в сельском хозяйстве, указывая на возможное существование «закона природы». Интересно, что этот закон природы оказался частью математики, а не физики, химии или биологии, как обычно бывает с законами природы. [1] Illustrating the Law of Large Numbers (and Confidence Intervals) Jeffrey D Blume & Richard M Royall =========== Источник: habr.com =========== Похожие новости:
Математика ) |
|
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 19:13
Часовой пояс: UTC + 5