[Python, Django, Микросервисы, Kubernetes] Микросервисы на монолите
Автор
Сообщение
news_bot ®
Стаж: 6 лет 9 месяцев
Сообщений: 27286
Всем привет! Скажу сразу, эта статья не про очередное переписывание монолита на микросервисы, а о применении микросервисных практик в рамках существующего проекта с использованием интересных, как мне кажется, подходов. Наверное, уже нет смысла объяснять, почему многие проекты активно используют микросервисную архитектуру. Сегодня в IT возможности таких инструментов как Docker, Kubernetes, Service Mesh и прочих сильно меняют наше представление об архитектуре современного приложения, вынуждая пересматривать подходы и переписывать целые проекты на микросервисы. Но так ли это необходимо для всех частей проекта? В нашем проекте есть несколько систем, которые писались в те времена, когда преимущества микросервисного подхода были не столь очевидны, а инструментов, позволяющих использовать такой подход, было очень мало, и переписывать системы полностью просто нецелесообразно. Для адаптации к новой архитектуре мы решили в части задач использовать асинхронный подход, а также перейти к хранению части данных на общих сервисах. Само приложение при этом осталось на Django (API для SPA). При переходе на k8s деплой приложения был разбит на несколько команд: HTTP-часть (API), Celery-воркеры и RabbitMQ-консьюмеры. Причем было именно три развёртывания, то есть все воркеры, как и консьюмеры, крутились в одном контейнере. Быстрое и простое решение. Но этого оказалось недостаточно, так как это решение не обеспечивало нужный уровень надежности. Начнем с RabbitMQ-консьюмеров. Основная проблема была в том, что внутри контейнера стартовал воркер, который запускал много потоков на каждый консьюмер, и пока их было пару штук, всё было хорошо, но сейчас их уже десятки. Решение нашли простое: каждый консьюмер вывели в отдельную команду manage.py и деплоим отдельно. Таким образом, у нас несколько десятков k8s-развёртываний на одном образе, с разными параметрами запуска. Ресурсы мы тоже выставляем для каждого консьюмера отдельно, и реальное потребление у консьюмеров достаточно невысокое. В результате для одного репозитория у нас десятки реальных отдельных сервисов в k8s, которые можно масштабировать, и при этом разработчикам намного удобнее работать только с одним репозиторием. То же самое и для развёртываний Сelery. Если решение с воркерами достаточно простое и очевидное, то с HTTP-частью было немного сложнее. В нашей системе внешний межсервисный API и внутренний для фронтенда были в одном развёртывании с большим лимитом ресурсов и большим количеством инстансов. Вроде бы рабочее решение? Да, но ДомКлик — большой сложный механизм с сотнями сервисов, и иногда выход одного стороннего (вне конкретной системы) сервиса, который используется в одном единственном API-методе, может привести к пробке на сервере uwsgi. К чему это приводит, надеюсь, объяснять не нужно, всё встает или тормозит. В такие моменты должен приходить Кэп и говорить что-то вроде: «Нужно было делать отдельные микросервисы и тогда упал бы только тот, что связан с отказавшим внешним сервисом». Но у нас-то монолит.В Kubernetes есть такой сервис, как Ingress Controller, его основная задача — распределять нагрузку между репликами. Но он, по сути, nginx, а значит Ingress Controller можно использовать для того, чтобы роутить запросы на разные сервисы. Примерно вот так выглядит схема:
Проанализировав наш API, мы разбили его на несколько групп:
- Внешний API (методы для других сервисов).
- Внутренний API (методы для фронтенда).
- Некритичные API-методы, которые зависимы от внешних сервисов, но не влияют на работу системы (статистика, счетчики и т. п.)
Таким образом можно легко создавать новые сервисы. Управлять ресурсами для каждого из них, масштабировать те методы, которые несут большую нагрузку, и получать другие преимущества. Если один из методов перестанет отвечать из-за каких-то внешних причин, то его можно изолировать в отдельное развёртывание и снизить нагрузку на другие части системы.В конечном итоге наша система, имея один репозиторий и Django под капотом, раздроблена благодаря Kubernetes на 42 сервиса, 5 из которых делят HTTP-трафик, а остальные 37 — консьюмеры и Celery-задачи. И в таком виде она может быть актуальна еще пару лет, несмотря на использование относительно старого стека технологий.
===========
Источник:
habr.com
===========
Похожие новости:
- [Python, IT-инфраструктура, Терминология IT] Немного про трекинг и сервис переходов Admitad
- [Git, DevOps, Kubernetes] HelmWave v0.5.0 – GitOps для твоего Kubernetes
- [Высокая производительность, DevOps, Kubernetes] Вебинар «Деплоим приложение на Tarantool Cartridge в Kubernetes» 15 декабря
- [Open source, Конференции, DevOps, Kubernetes] [Анонс] 16 декабря 2020 — Воркшоп: Знакомство с архитектурой решения Traefik
- [Системное администрирование, Серверное администрирование, DevOps, Kubernetes] Сравнение Managed Kubernetes сервисов: GKE, EKS и AKS (перевод)
- [Разработка веб-сайтов, Python, Открытые данные, Визуализация данных, Финансы в IT] Визуализация данных по акциям дивидендных аристократов США в формате веб-приложения
- [Python, Программирование] Семь бед — один ответ: как мы решали проблему постоянных исправлений
- [Виртуализация, Машинное обучение, Kubernetes, Data Engineering] Вебинар «MLOps без боли. Разворачиваем Kubeflow» 22 декабря от Mail.ru Cloud Solutions
- [Java, Управление разработкой, Микросервисы] Внести массовые изменения в микросервисы, автоматизировать код-ревью и сберечь нервы команде
- [Python, JavaScript, Браузеры] Brython: заменяем JavaScript на Python на фронтенде (перевод)
Теги для поиска: #_python, #_django, #_mikroservisy (Микросервисы), #_kubernetes, #_k8s, #_kuber, #_django, #_ingress, #_blog_kompanii_domklik (
Блог компании ДомКлик
), #_python, #_django, #_mikroservisy (
Микросервисы
), #_kubernetes
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 10:41
Часовой пояс: UTC + 5
Автор | Сообщение |
---|---|
news_bot ®
Стаж: 6 лет 9 месяцев |
|
Всем привет! Скажу сразу, эта статья не про очередное переписывание монолита на микросервисы, а о применении микросервисных практик в рамках существующего проекта с использованием интересных, как мне кажется, подходов. Наверное, уже нет смысла объяснять, почему многие проекты активно используют микросервисную архитектуру. Сегодня в IT возможности таких инструментов как Docker, Kubernetes, Service Mesh и прочих сильно меняют наше представление об архитектуре современного приложения, вынуждая пересматривать подходы и переписывать целые проекты на микросервисы. Но так ли это необходимо для всех частей проекта? В нашем проекте есть несколько систем, которые писались в те времена, когда преимущества микросервисного подхода были не столь очевидны, а инструментов, позволяющих использовать такой подход, было очень мало, и переписывать системы полностью просто нецелесообразно. Для адаптации к новой архитектуре мы решили в части задач использовать асинхронный подход, а также перейти к хранению части данных на общих сервисах. Само приложение при этом осталось на Django (API для SPA). При переходе на k8s деплой приложения был разбит на несколько команд: HTTP-часть (API), Celery-воркеры и RabbitMQ-консьюмеры. Причем было именно три развёртывания, то есть все воркеры, как и консьюмеры, крутились в одном контейнере. Быстрое и простое решение. Но этого оказалось недостаточно, так как это решение не обеспечивало нужный уровень надежности. Начнем с RabbitMQ-консьюмеров. Основная проблема была в том, что внутри контейнера стартовал воркер, который запускал много потоков на каждый консьюмер, и пока их было пару штук, всё было хорошо, но сейчас их уже десятки. Решение нашли простое: каждый консьюмер вывели в отдельную команду manage.py и деплоим отдельно. Таким образом, у нас несколько десятков k8s-развёртываний на одном образе, с разными параметрами запуска. Ресурсы мы тоже выставляем для каждого консьюмера отдельно, и реальное потребление у консьюмеров достаточно невысокое. В результате для одного репозитория у нас десятки реальных отдельных сервисов в k8s, которые можно масштабировать, и при этом разработчикам намного удобнее работать только с одним репозиторием. То же самое и для развёртываний Сelery. Если решение с воркерами достаточно простое и очевидное, то с HTTP-частью было немного сложнее. В нашей системе внешний межсервисный API и внутренний для фронтенда были в одном развёртывании с большим лимитом ресурсов и большим количеством инстансов. Вроде бы рабочее решение? Да, но ДомКлик — большой сложный механизм с сотнями сервисов, и иногда выход одного стороннего (вне конкретной системы) сервиса, который используется в одном единственном API-методе, может привести к пробке на сервере uwsgi. К чему это приводит, надеюсь, объяснять не нужно, всё встает или тормозит. В такие моменты должен приходить Кэп и говорить что-то вроде: «Нужно было делать отдельные микросервисы и тогда упал бы только тот, что связан с отказавшим внешним сервисом». Но у нас-то монолит.В Kubernetes есть такой сервис, как Ingress Controller, его основная задача — распределять нагрузку между репликами. Но он, по сути, nginx, а значит Ingress Controller можно использовать для того, чтобы роутить запросы на разные сервисы. Примерно вот так выглядит схема: Проанализировав наш API, мы разбили его на несколько групп:
=========== Источник: habr.com =========== Похожие новости:
Блог компании ДомКлик ), #_python, #_django, #_mikroservisy ( Микросервисы ), #_kubernetes |
|
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 10:41
Часовой пояс: UTC + 5