[Разработка веб-сайтов, Python, Программирование, Функциональное программирование] Какая асинхронность должна была бы быть в Python

Автор Сообщение
news_bot ®

Стаж: 6 лет 3 месяца
Сообщений: 27286

Создавать темы news_bot ® написал(а)
29-Июл-2020 14:31

В последние несколько лет ключевое слово async и семантика асинхронного программирования проникла во многие популярные языки программирования: JavaScript, Rust, C#, и многие другие. Конечно, в Python тоже есть async/await, они появились в Python 3.5.
В этой статье хочу обсудить проблемы асинхронного кода, порассуждать об альтернативах и предложить новый подход поддерживать и синхронные, и асинхронные приложения одновременно.
Цвет функций
Когда в язык программирования включают асинхронные функции, он по сути раскалывается надвое. Появляются красные функции (или асинхронные), а некоторые функции остаются синими (синхронными).
Основная проблема в том, что синие функции не могут вызывать красные, но красные потенциально могут вызвать синие. В Python, например, это частично так: асинхронные функции могут вызывать только синхронные неблокирующие функции. Но определить по описанию, блокирующая функция или нет, невозможно. Python же скриптовый язык.
Этот раскол приводит к разделению языка на два подмножества: синхронное и асинхронное. Python 3.5 вышел больше пяти лет назад, но async все еще поддерживается далеко не так хорошо, как синхронные возможности Python.
Больше о цветах функции можно прочитать в этой замечательной статье.
Дублирование кода
Разные цвета функций на практике означают дублирование кода.
Представьте, вы разрабатываете CLI-инструмент для извлечения размера веб-страницы и хотите поддерживать и синхронный, и асинхронный способы его работы. Например, это нужно, если вы пишете библиотеку и не знаете, как будет использоваться ваш код. И речь не только о библиотеках PyPI, но и о собственных библиотеках с общей логикой для разных сервисов, написанных, например, на Django и aiohttp. Хотя, конечно, независимые приложения в основном пишутся или только синхронно, или только асинхронно.
Начнём с синхронного псевдокода:
def fetch_resource_size(url: str) -> int:
    response = client_get(url)
    return len(response.content)

Выглядит хорошо. Теперь посмотрим на асинхронный аналог:
async def fetch_resource_size(url: str) -> int:
    response = await client_get(url)
    return len(response.content)

В целом, это тот же самый код, но с добавлением слов async и await. И я это не выдумал — сравните примеры кода в туториале по httpx:

Там точно такая же картина.
Абстракция и композиция
Получается, нужно переписать весь синхронный код и расставить тут и там async и await, чтобы программа стала асинхронной.
В решении этой проблемы могут помочь два принципа. Во-первых, перепишем императивный псевдокод в функциональный. Это позволит увидеть картину более ясно.
def fetch_resource_size(url: str) -> Abstraction[int]:
    return client_get(url).map(
        lambda response: len(response.content),
    )

Вы спросите, что это за метод .map, что он делает. Так в функциональном стиле происходит композиция сложных абстракций и чистых функций. Это позволяет создать новую абстракцию с новым состоянием из существующей. Предположим, client_get(url) изначально возвращает Abstraction[Response], а вызов .map(lambda response: len(response.content)) преобразует ответ в требуемый экземпляр Abstraction[int].
Становится понятно, что делать дальше. Обратите внимание, как легко мы перешли от нескольких независимых шагов к последовательному вызову функций. К тому же мы изменили тип ответа: теперь функция возвращает некоторую абстракцию.
Перепишем код для работы с асинхронной версией:
def fetch_resource_size(url: str) -> AsyncAbstraction[int]:
    return client_get(url).map(
        lambda response: len(response.content),
    )

Единственное, что отличается, — это тип возвращаемого значения — AsyncAbstraction. В остальном код остался точно таким же. Больше не нужно использовать ключевые слова async и await. await не используется вообще (ради этого всё и затевалось), а без него нет смысла и в async.
Последнее, что требуется, это решить, какой клиент нам нужен: асинхронный или синхронный.
def fetch_resource_size(
    client_get: Callable[[str], AbstactionType[Response]],
    url: str,
) -> AbstactionType[int]:
    return client_get(url).map(
        lambda response: len(response.content),
    )

client_get теперь является аргументом вызываемого типа, который получает на вход строку URL-адреса и возвращает некоторый тип AbstractionType над объектом Response. AbstractionType — либо Abstraction, либо AsyncAbstraction из предыдущих примеров.
Когда передаем Abstraction, код работает синхронно, когда AsyncAbstraction — тот же самый код автоматически начинает работать асинхронно.
IOResult и FutureResult
К счастью, в dry-python/returns уже есть правильные абстракции.
Позвольте представить вам типобезопасный, дружелюбный к mypy, не зависящий от фреймворка, полностью написанный на Python инструмент. В нём есть потрясающие, удобные, замечательные абстракции, которые можно использовать абсолютно в любом проекте.
Синхронный вариант
Сначала поставим зависимости, чтобы получить воспроизводимый пример.
pip install returns httpx anyio

Далее превратим псевдокод в рабочий код на Python. Начнем с синхронного варианта.
from typing import Callable
import httpx
from returns.io import IOResultE, impure_safe
def fetch_resource_size(
    client_get: Callable[[str], IOResultE[httpx.Response]],
    url: str,
) -> IOResultE[int]:
    return client_get(url).map(
        lambda response: len(response.content),
    )
print(fetch_resource_size(
    impure_safe(httpx.get),
    'https://sobolevn.me',
))
# => <IOResult: <Success: 27972>>

Потребовалось изменить пару моментов, чтобы получился рабочий код:
  • Использовать IOResultE — функциональный способ обработки ошибок синхронного IO (исключения не всегда подходят). Типы, основанные на Result, позволяют имитировать исключения, но с раздельными значениями Failure(). Успешные выходы при этом оборачиваются в тип Success. Обычно никому нет дела до исключений, а нам есть.
  • Использовать httpx, который может работать с синхронными и асинхронными запросами.
  • Использовать функцию impure_safe, чтобы преобразовывать тип, который возвращает httpx.get, в абстракцию IOResultE.

Асинхронный вариант
Попробуем сделать всё то же самое в асинхронном коде.
from typing import Callable
import anyio
import httpx
from returns.future import FutureResultE, future_safe
def fetch_resource_size(
    client_get: Callable[[str], FutureResultE[httpx.Response]],
    url: str,
) -> FutureResultE[int]:
    return client_get(url).map(
        lambda response: len(response.content),
    )
page_size = fetch_resource_size(
    future_safe(httpx.AsyncClient().get),
    'https://sobolevn.me',
)
print(page_size)
print(anyio.run(page_size.awaitable))
# => <FutureResult: <coroutine object async_map at 0x10b17c320>>
# => <IOResult: <Success: 27972>>

Видите: результат точно такой же, но теперь код работает асинхронно. При этом его основная часть не изменилась. Однако нужно обратить внимание вот на что:
  • Синхронный IOResultE изменился на асинхронный FutureResultE, impure_safe — на future_safe. Работает так же, но возвращает другую абстракцию: FutureResultE.
  • Используется AsyncClient из httpx.
  • Результирующее значение FutureResult необходимо запустить, потому что красные функции не могут вызывать сами себя.
  • Утилита anyio используется, чтобы показать, что этот подход работает с любой асинхронной библиотекой: asyncio, trio, curio.

Два в одном
Покажу, как объединить синхронную и асинхронную версию в одном типобезопасном API.
Higher Kinded Types и type-class для работы с IO ещё не вышли в релиз (они появятся в 0.15.0), поэтому проиллюстрирую на обычном @overload:
from typing import Callable, Union, overload
import anyio
import httpx
from returns.future import FutureResultE, future_safe
from returns.io import IOResultE, impure_safe
@overload
def fetch_resource_size(
    client_get: Callable[[str], IOResultE[httpx.Response]],
    url: str,
) -> IOResultE[int]:
    """Sync case."""
@overload
def fetch_resource_size(
    client_get: Callable[[str], FutureResultE[httpx.Response]],
    url: str,
) -> FutureResultE[int]:
    """Async case."""
def fetch_resource_size(
    client_get: Union[
        Callable[[str], IOResultE[httpx.Response]],
        Callable[[str], FutureResultE[httpx.Response]],
    ],
    url: str,
) -> Union[IOResultE[int], FutureResultE[int]]:
    return client_get(url).map(
        lambda response: len(response.content),
    )

С помощью декораторов @overload описываем, какие входные данные разрешены и какой при этом будет тип возвращаемого значения. Прочитать подробнее о декораторе @overload можно в другой моей статье.
Вызов функции с синхронным или асинхронным клиентом выглядит так:
# Sync:
print(fetch_resource_size(
    impure_safe(httpx.get),
    'https://sobolevn.me',
))
# => <IOResult: <Success: 27972>>
# Async:
page_size = fetch_resource_size(
    future_safe(httpx.AsyncClient().get),
    'https://sobolevn.me',
)
print(page_size)
print(anyio.run(page_size.awaitable))
# => <FutureResult: <coroutine object async_map at 0x10b17c320>>
# => <IOResult: <Success: 27972>>

Как видите, fetch_resource_size в синхронном варианте сразу возвращает IOResult и выполняет его. В то время как в асинхронном варианте требуется event-loop, как для обычной корутины. anyio используется для вывода результатов.
У mypy к этому коду никаких замечаний нет:
» mypy async_and_sync.py
Success: no issues found in 1 source file

Посмотрим, что будет, если что-нибудь испортить.
---lambda response: len(response.content),
+++lambda response: response.content,

mypy легко находит новые ошибки:
» mypy async_and_sync.py
async_and_sync.py:33: error: Argument 1 to "map" of "IOResult" has incompatible type "Callable[[Response], bytes]"; expected "Callable[[Response], int]"
async_and_sync.py:33: error: Argument 1 to "map" of "FutureResult" has incompatible type "Callable[[Response], bytes]"; expected "Callable[[Response], int]"
async_and_sync.py:33: error: Incompatible return value type (got "bytes", expected "int")

Ловкость рук и никакой магии: чтобы написать асинхронный код с правильными абстракциями, нужна только старая добрая композиция. А вот то, что у нас получается один и тот же API для разных типов, — по-настоящему здорово. Например, это позволяет абстрагироваться от того, как работают HTTP-запросы: синхронно или асинхронно.
Надеюсь, этот пример наглядно доказал, какими на самом деле классными могут быть асинхронные программы. А если попробуете dry-python/returns, то найдете еще много интересного. В новой версии мы уже сделали необходимые примитивы для работы с Higher Kinded Types и все необходимые интерфейсы. Код выше теперь можно переписать так:
from typing import Callable, TypeVar
import anyio
import httpx
from returns.future import future_safe
from returns.interfaces.specific.ioresult import IOResultLike2
from returns.io import impure_safe
from returns.primitives.hkt import Kind2, kinded
_IOKind = TypeVar('_IOKind', bound=IOResultLike2)
@kinded
def fetch_resource_size(
    client_get: Callable[[str], Kind2[_IOKind, httpx.Response, Exception]],
    url: str,
) -> Kind2[_IOKind, int, Exception]:
    return client_get(url).map(
        lambda response: len(response.content),
    )
# Sync:
print(fetch_resource_size(
    impure_safe(httpx.get),
    'https://sobolevn.me',
))
# => <IOResult: <Success: 27972>>
# Async:
page_size = fetch_resource_size(
    future_safe(httpx.AsyncClient().get),
    'https://sobolevn.me',
)
print(page_size)
print(anyio.run(page_size.awaitable))
# => <FutureResult: <coroutine object async_map at 0x10b17c320>>
# => <IOResult: <Success: 27972>>

Смотрите ветку `master`, там это уже работает.
Больше возможностей dry-python
Расскажу о нескольких других полезных фичах dry-python, которыми я больше всего горжусь.

from returns.curry import curry, partial
def example(a: int, b: str) -> float:
    ...
reveal_type(partial(example, 1))
# note: Revealed type is 'def (b: builtins.str) -> builtins.float'
reveal_type(curry(example))
# note: Revealed type is 'Overload(def (a: builtins.int) -> def (b: builtins.str) -> builtins.float, def (a: builtins.int, b: builtins.str) -> builtins.float)'

Это позволяет использовать @curry, например, вот так:
@curry
def example(a: int, b: str) -> float:
    return float(a + len(b))
assert example(1, 'abc') == 4.0
assert example(1)('abc') == 4.0


За счёт кастомного mypy-плагина можно строить функциональные пайплайны, возвращающие типы.
from returns.pipeline import flow
assert flow(
    [1, 2, 3],
    lambda collection: max(collection),
    lambda max_number: -max_number,
) == -3

Обычно в типизированном коде очень неудобно работать с лямбдами, из-за того что их аргументы всегда типа Any. Вывод mypy решает эту проблему.
С его помощью нам теперь известно, что lambda collection: max(collection) типа Callable[[List[int]], int], а lambda max_number: -max_number просто Callable[[int], int]. Во flow можно передать любое количество аргументов, и все они будут отлично работать. Всё благодаря плагину.

Абстракцию над FutureResult, о которой мы говорили ранее, можно использовать для того, чтобы явно передать зависимости в асинхронные программы в функциональном стиле.
Планы на будущее
Прежде чем наконец-то выпустить версию 1.0, нам предстоит решить несколько важных задач:
  • Реализовать Higher Kinded Types или их эмуляцию (issue).
  • Добавить надлежащие type-классы, чтобы реализовать необходимые абстракции (issue).
  • Возможно, попробовать компилятор mypyc, что потенциально позволит компилировать типизированные аннотированные Python-программы в двоичный файл. Тогда код с dry-python/returns будет работать в несколько раз быстрее (issue).
  • Исследовать новые способы написания функционального кода на Python, например, такие как «do-notation».

Выводы
С помощью композиции и абстракции можно решить любую проблему. В этой статье мы рассмотрели, как решить проблему цветов функций и писать простой, читаемый и гибкий код, который работает. И сделать проверку типов.
Пробуйте dry-python/returns и подключайтесь к Russian Python Week: на конференции core-разработчик dry-python Pablo Aguilar проведет воркшоп по использованию dry-python для написания бизнес-логики.
===========
Источник:
habr.com
===========

Похожие новости: Теги для поиска: #_razrabotka_vebsajtov (Разработка веб-сайтов), #_python, #_programmirovanie (Программирование), #_funktsionalnoe_programmirovanie (Функциональное программирование), #_python, #_moscwopythonconf, #_asyncio, #_returns, #_drypython, #_blog_kompanii_konferentsii_olega_bunina_(ontiko) (
Блог компании Конференции Олега Бунина (Онтико)
)
, #_razrabotka_vebsajtov (
Разработка веб-сайтов
)
, #_python, #_programmirovanie (
Программирование
)
, #_funktsionalnoe_programmirovanie (
Функциональное программирование
)
Профиль  ЛС 
Показать сообщения:     

Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы

Текущее время: 10-Май 20:11
Часовой пояс: UTC + 5