[Управление проектами, Управление продуктом] OLAP-куб для аналитики процессов техподдержки
Автор
Сообщение
news_bot ®
Стаж: 6 лет 9 месяцев
Сообщений: 27286
Мы внедрили OLAP-куб, чтобы в реальном времени анализировать процессы техподдержки в наших продуктах. Рассказываем, как работает эта система и какие преимущества она нам обеспечила.Процессы техподдержки объединяют всех участников работы над продуктом: и инженеров поддержки, и разработчиков, и конечно же, PM и заказчика. На нижнем уровне нам важно следить за исправлением багов по SLA, на верхнем – контролировать общее состояние продукта, чтобы ошибки не тормозили его развитие.Когда мы взялись за создание аналитики нашей техподдержки, главной целью было обеспечить прозрачность процессов. Заявки на поддержку у нас собираются в Jira, а разработчики создают задачи в TFS. Прямой связи нет, отслеживать статусы приходилось вручную. Поэтому контролировать общую картину было очень сложно.Поэтому в прошлом году команда поддержки задумалась над метриками, которые позволили бы всем заинтересованным сторонам иметь консолидированную информацию по динамике загрузки, скорости обработки обращений на стороне поддержки и разработки.Под капотом OLAP-кубаНаша аналитика работает на базе следующих метрик:1. Открытые задачи: что передано в поддержку, что находится у разработчиков на исправлении.2. Закрытые задачи: с чем поддержка справилась сама, где потребовалось привлечь разработчиков, какие проблемы перешли в бэклог (если по согласованию с заказчиком команда решила, что исправление какой-то фичи сейчас не приоритетно).Некоторое время команда поддержки собирала эти метрики вручную, чтобы мы убедились, что нам нужны именно эти показатели. После этого силами BI-инженеров и специалистов инфраструктурного отдела мы процесс автоматизировали и собрали куб.
Он работает на базе BI-линейки Microsoft (ETL – MS SSIS, аналитика – MS SSAS, БД – MS SQL). К Jira мы подключаемся по API и получаем всю необходимую информацию по заявкам: когда создана каждая из них, с каким статусом, к какой задаче привязана в TFS и т.д. А с TFS работаем напрямую, забирая данные из её базы.Помимо текущих состояний, из Jira тянется история всех изменений в задаче. Это позволяет нам корректно рассчитывать все переходы между состояниями задач, чтобы, к примеру, в данных не было задвоений, если задачу несколько раз закрывали и открывали.Одна из сложностей – это установить связь между заявкой в Jira и задачей в TFS. Ссылку на TFS инженеры поддержки добавляют сами, а где свободный ввод данных, там и риск ошибок и неточностей. Мы разработали систему проверок, которые помогают установить корректные связи по косвенным признакам: проекты, даты, исполнители и т.п.Под каждую метрику мы можем прописывать любые правила, обогащая логику расчёта. Дополнительные контроли проверяют, чтобы связи между результирующими метриками не нарушались. Так что в будущем мы сможем добавлять метрики без ущерба для итоговой картины. Такой подход также позволит добавлять данные из других принципиально новых источников – например, связать задачи со статьями в Confluence.Какие мы получили результатыКуб показывает загрузку техподдержки, динамику отработки обращений по продуктам, динамику выполнения задач в командах разработки, созданных техподдержкой. Весь объём заявок обрабатывается примерно за минуту, так что обновление происходит фактически в реальном времени.В результате PM-ы, руководители и сама служба техподдержки может контролировать:
- Насколько эффективно взаимодействуют команды поддержки и разработки, как быстро решают задачи друг друга.
- Хорошо ли в рамках техподдержки работает problem solving, как идёт передача знаний от разработчиков инженерам поддержки – если всё хорошо, то количество заявок от поддержки в разработку по продукту должно уменьшаться.
- Хватает ли нам специалистов техподдержки на продуктах – как быстро уменьшается объём обращений.
И самое важное – мы можем отлавливать рассинхрон статусов между Jira и TFS, т.е. когда в TFS задача закрыта, а в Jira открыта и наоборот. Второй сценарий – это серьёзный риск для команды, потому что это значит, что поддержка посчитала задачу закрытой, а разработчики на самом деле продолжают над ней работать. В каждом таком случае нужно быстро разбираться – это кто-то забыл статус перещёлкнуть или в коммуникациях произошёл сбой.Наконец, куб автоматизировал подготовку регулярных отчётов по поддержке продуктов, которые мы предоставляем нашим заказчикам. Больше не приходится собирать данные вручную – 90% работы происходит по нажатию одной кнопки. Оставшиеся 10% - это интеллектуальный вклад поддержки и PM-ов, которые добавляют свой анализ по выполненным задачам.
===========
Источник:
habr.com
===========
Похожие новости:
- [Управление продуктом] Грустная история о том, что каждый программный код переписывается хоть раз (перевод)
- [JavaScript, Git, Управление разработкой, Управление продуктом, DevOps] Введение в непрерывную поставку (CD) при помощи GitLab (перевод)
- [Разработка под iOS, Разработка мобильных приложений, Разработка под Android, Управление проектами, Управление продуктом] 13 подвохов мобильного приложения, о которых лучше знать до старта разработки
- [Информационная безопасность, Машинное обучение] Атаки на компьютерное зрение
- [Управление проектами, Законодательство в IT, Финансы в IT, IT-компании] FT: Сбербанк и Mail.ru разделят бизнес с помощью Кремля
- [Управление проектами, Медийная реклама, Контент-маркетинг, Развитие стартапа] Content marketing stamina — the easy way for startup founders to get ahead of their competition
- [Мессенджеры, Python, Управление проектами, Офисы IT-компаний] Telegram-бот на Python для создания задач в MS Outlook и заметок в Evernote
- [Управление проектами, Управление персоналом] FWD: RE: Покупка бумаги в офис. Голосуем
- [Python, HTML, Big Data, Визуализация данных, Веб-аналитика] Аналитика алкогольной продукции сети магазинов «Лента»
- [Управление проектами, Growth Hacking, Венчурные инвестиции, Развитие стартапа] Как стартапу получить ранний трэкшн (traction)
Теги для поиска: #_upravlenie_proektami (Управление проектами), #_upravlenie_produktom (Управление продуктом), #_tehpodderzhka (техподдержка), #_analitika (аналитика), #_olap, #_upravlenie_proektami (
Управление проектами
), #_upravlenie_produktom (
Управление продуктом
)
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 23:15
Часовой пояс: UTC + 5
Автор | Сообщение |
---|---|
news_bot ®
Стаж: 6 лет 9 месяцев |
|
Мы внедрили OLAP-куб, чтобы в реальном времени анализировать процессы техподдержки в наших продуктах. Рассказываем, как работает эта система и какие преимущества она нам обеспечила.Процессы техподдержки объединяют всех участников работы над продуктом: и инженеров поддержки, и разработчиков, и конечно же, PM и заказчика. На нижнем уровне нам важно следить за исправлением багов по SLA, на верхнем – контролировать общее состояние продукта, чтобы ошибки не тормозили его развитие.Когда мы взялись за создание аналитики нашей техподдержки, главной целью было обеспечить прозрачность процессов. Заявки на поддержку у нас собираются в Jira, а разработчики создают задачи в TFS. Прямой связи нет, отслеживать статусы приходилось вручную. Поэтому контролировать общую картину было очень сложно.Поэтому в прошлом году команда поддержки задумалась над метриками, которые позволили бы всем заинтересованным сторонам иметь консолидированную информацию по динамике загрузки, скорости обработки обращений на стороне поддержки и разработки.Под капотом OLAP-кубаНаша аналитика работает на базе следующих метрик:1. Открытые задачи: что передано в поддержку, что находится у разработчиков на исправлении.2. Закрытые задачи: с чем поддержка справилась сама, где потребовалось привлечь разработчиков, какие проблемы перешли в бэклог (если по согласованию с заказчиком команда решила, что исправление какой-то фичи сейчас не приоритетно).Некоторое время команда поддержки собирала эти метрики вручную, чтобы мы убедились, что нам нужны именно эти показатели. После этого силами BI-инженеров и специалистов инфраструктурного отдела мы процесс автоматизировали и собрали куб. Он работает на базе BI-линейки Microsoft (ETL – MS SSIS, аналитика – MS SSAS, БД – MS SQL). К Jira мы подключаемся по API и получаем всю необходимую информацию по заявкам: когда создана каждая из них, с каким статусом, к какой задаче привязана в TFS и т.д. А с TFS работаем напрямую, забирая данные из её базы.Помимо текущих состояний, из Jira тянется история всех изменений в задаче. Это позволяет нам корректно рассчитывать все переходы между состояниями задач, чтобы, к примеру, в данных не было задвоений, если задачу несколько раз закрывали и открывали.Одна из сложностей – это установить связь между заявкой в Jira и задачей в TFS. Ссылку на TFS инженеры поддержки добавляют сами, а где свободный ввод данных, там и риск ошибок и неточностей. Мы разработали систему проверок, которые помогают установить корректные связи по косвенным признакам: проекты, даты, исполнители и т.п.Под каждую метрику мы можем прописывать любые правила, обогащая логику расчёта. Дополнительные контроли проверяют, чтобы связи между результирующими метриками не нарушались. Так что в будущем мы сможем добавлять метрики без ущерба для итоговой картины. Такой подход также позволит добавлять данные из других принципиально новых источников – например, связать задачи со статьями в Confluence.Какие мы получили результатыКуб показывает загрузку техподдержки, динамику отработки обращений по продуктам, динамику выполнения задач в командах разработки, созданных техподдержкой. Весь объём заявок обрабатывается примерно за минуту, так что обновление происходит фактически в реальном времени.В результате PM-ы, руководители и сама служба техподдержки может контролировать:
=========== Источник: habr.com =========== Похожие новости:
Управление проектами ), #_upravlenie_produktom ( Управление продуктом ) |
|
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 23:15
Часовой пояс: UTC + 5