[Машинное обучение, Искусственный интеллект] Примеры архитектур нейронных сетей для решения пяти прикладных задач
Автор
Сообщение
news_bot ®
Стаж: 6 лет 9 месяцев
Сообщений: 27286
Всем привет! Первый пост на Хабре и сразу хардкорная тема на злобу дня. Думаю, многие разработчики искусственного интеллекта для решения прикладных задач задумывались, какие архитектуры нейронок наиболее эффективны в контексте конкретных задач. Сразу оговорюсь, что приведенные примеры разработаны сотрудниками Университета искусственного интеллекта. Но мне, как участнику их интенсива, посчастливилось потестить их архитектуры и собрать полезную статистику по их эффективности.1. Распознавание рукописных цифрНачнем с с простейшей архитектуры. Данная сетка состоит из одного входного и 3-х полносвязных слоев:
Данная простая сетка при обучении показала весьма неплохие результаты. Точность на обучающей выборке составила 99,4%, в то время как на проверочной - 98,5%. И это за 2,57 секунд! Идем дальше.
2. Распознавание марки автомобиляВторая сетка потяжелее, но и задача стояла по амбициознее. Для эксперимента были взяты снимки трех марок - Рено, Мерседес и Феррари. Модель состоит из следующих слоев:
Как можно понять по долго тянущейся "простыне" из блоков, в модели представлены различные слои. К примеру использованы Сверточный2D, МаксПуллинг2D, Дропаут, Выравнивающий и Полносвязный слои в различных сочетаниях. Точность на обучающей выборке составила 76,7%, в то время как на проверочной - 73,6%. На обучение модель затратила немного времени - всего 1,7 секунд.
3. Распознавание голосовых командТретья задача формулируется просто - в потоке речи нужно распознать конкретное слово или фразу для управления умным домом. Сетка вышла следующего формата:
Модель получилась достаточно подтянутой и получила на выходе обучения следующие результаты. Точность на обучающей выборке составила 100,0%, на проверочной - 99,9% (!). Явно рабочая система. Время обучения - 0,7 секунд. Все это иллюстрирует красивая картина графика обучения.
4. Трейдинг акциямиДвигаемся дальше, и на очереди одна из самых горячих тем на рынке искусственного интеллекта - как лежать на диване, пока нейронка автономно генерирует профит. С такой задачей в теории должна прекрасно справляться следующая наша гостья - нейронка, торгующая на рынке акций. Модель выглядит следующим образом.
На выходе получили достаточно полновесную нейронку с множественными слоями. Она состоит к примеру из таких видов слоев, как Выравнивающий, Повтор, Сверточный1D, МаксПуллинг1D, Полносвязный и Дропаут. Точность на обучающей выборке составила 82,7%, на проверочной - 85,1%. Как видим, точность проверочной выборки здесь даже превысила обучающую. Модель выглядит достаточно перспективной. Время обучения - 0,16 секунд.
5. Сегментация...губДа, почему бы не внести порцию веселья в нашу сугубо научную статью? Вот и задача по сегментации изображения. В данном случае нас интересует, как на рандомном снимке выделить исключительно те участки, которые относятся к человеческим губам. Модель строим такую:
Первая серьезная модель, состоящая из различных слоев и блоков. Блоков здесь три - стартовый, PSP и финальный. Ключевой блок - второй, там всего один Сверточный слой. В первом применены Сверточный и Нормализация, по 2 штуки каждый. В финальном - Сверточный (3 щтуки) и Нормализация (2 штуки). Точность на обучающей выборке составила 99,8%, на проверочной - 99,8%. Как видим, точность проверочной выборки здесь совпала с обучающей. Время обучения составило 4,7 секунд.Приведенные примеры архитектур в ходе тестов показали неплохие результаты и могут быть применены в решении практических задач. По каждой из моделей было проведено порядка 20-30 тестов по изменению их параметров. Возможно в следующих публикациях приведу подробные диапазоны тестирования представленных моделей. Спасибо за внимание!
===========
Источник:
habr.com
===========
Похожие новости:
- [Интернет-маркетинг, Контекстная реклама] Как стать востребованным специалистом по контекстной рекламе
- [Браузеры] Vivaldi 3.6 — Выходим на новый уровень
- [Управление персоналом, Карьера в IT-индустрии, Читальный зал] Взаимоотношения с исполнителями — трудовой договор или договор о результатах труда
- [Программирование, C#, Учебный процесс в IT] Как избавиться от if-else при помощи команд и обработчиков (перевод)
- [IT-инфраструктура, Виртуализация, Microsoft SQL Server, Администрирование баз данных] Как мы разгоняли кластер для нагруженных баз Microsoft SQL и получали заветные 200 000 IOPS
- [Информационная безопасность, Разработка веб-сайтов, JavaScript] Опасная уязвимость в популярной библиотеке Sequelize
- [Карьера в IT-индустрии, Конференции] Карьерный level up: технические интервью и работа в ИТ в 2021
- [Управление разработкой, Бизнес-модели, Микросервисы] Моделирование микросервисов с помощью Event storming
- [Социальные сети и сообщества, Финансы в IT, Игры и игровые приставки] Реддит против Wall Street: как идёт борьба троллей с финансовыми воротилами
- [Настройка Linux, Системное администрирование, Софт, Накопители] Самый актуальный гайд по установке Linux на SSD-накопители в 2021 году
Теги для поиска: #_mashinnoe_obuchenie (Машинное обучение), #_iskusstvennyj_intellekt (Искусственный интеллект), #_nejroset (нейросеть), #_nejronnye_seti (нейронные сети), #_artificial_intelligence, #_machinelearning, #_ai, #_ii (ии), #_mashinnoe_obuchenie (
Машинное обучение
), #_iskusstvennyj_intellekt (
Искусственный интеллект
)
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 23:10
Часовой пояс: UTC + 5
Автор | Сообщение |
---|---|
news_bot ®
Стаж: 6 лет 9 месяцев |
|
Всем привет! Первый пост на Хабре и сразу хардкорная тема на злобу дня. Думаю, многие разработчики искусственного интеллекта для решения прикладных задач задумывались, какие архитектуры нейронок наиболее эффективны в контексте конкретных задач. Сразу оговорюсь, что приведенные примеры разработаны сотрудниками Университета искусственного интеллекта. Но мне, как участнику их интенсива, посчастливилось потестить их архитектуры и собрать полезную статистику по их эффективности.1. Распознавание рукописных цифрНачнем с с простейшей архитектуры. Данная сетка состоит из одного входного и 3-х полносвязных слоев: Данная простая сетка при обучении показала весьма неплохие результаты. Точность на обучающей выборке составила 99,4%, в то время как на проверочной - 98,5%. И это за 2,57 секунд! Идем дальше. 2. Распознавание марки автомобиляВторая сетка потяжелее, но и задача стояла по амбициознее. Для эксперимента были взяты снимки трех марок - Рено, Мерседес и Феррари. Модель состоит из следующих слоев: Как можно понять по долго тянущейся "простыне" из блоков, в модели представлены различные слои. К примеру использованы Сверточный2D, МаксПуллинг2D, Дропаут, Выравнивающий и Полносвязный слои в различных сочетаниях. Точность на обучающей выборке составила 76,7%, в то время как на проверочной - 73,6%. На обучение модель затратила немного времени - всего 1,7 секунд. 3. Распознавание голосовых командТретья задача формулируется просто - в потоке речи нужно распознать конкретное слово или фразу для управления умным домом. Сетка вышла следующего формата: Модель получилась достаточно подтянутой и получила на выходе обучения следующие результаты. Точность на обучающей выборке составила 100,0%, на проверочной - 99,9% (!). Явно рабочая система. Время обучения - 0,7 секунд. Все это иллюстрирует красивая картина графика обучения. 4. Трейдинг акциямиДвигаемся дальше, и на очереди одна из самых горячих тем на рынке искусственного интеллекта - как лежать на диване, пока нейронка автономно генерирует профит. С такой задачей в теории должна прекрасно справляться следующая наша гостья - нейронка, торгующая на рынке акций. Модель выглядит следующим образом. На выходе получили достаточно полновесную нейронку с множественными слоями. Она состоит к примеру из таких видов слоев, как Выравнивающий, Повтор, Сверточный1D, МаксПуллинг1D, Полносвязный и Дропаут. Точность на обучающей выборке составила 82,7%, на проверочной - 85,1%. Как видим, точность проверочной выборки здесь даже превысила обучающую. Модель выглядит достаточно перспективной. Время обучения - 0,16 секунд. 5. Сегментация...губДа, почему бы не внести порцию веселья в нашу сугубо научную статью? Вот и задача по сегментации изображения. В данном случае нас интересует, как на рандомном снимке выделить исключительно те участки, которые относятся к человеческим губам. Модель строим такую: Первая серьезная модель, состоящая из различных слоев и блоков. Блоков здесь три - стартовый, PSP и финальный. Ключевой блок - второй, там всего один Сверточный слой. В первом применены Сверточный и Нормализация, по 2 штуки каждый. В финальном - Сверточный (3 щтуки) и Нормализация (2 штуки). Точность на обучающей выборке составила 99,8%, на проверочной - 99,8%. Как видим, точность проверочной выборки здесь совпала с обучающей. Время обучения составило 4,7 секунд.Приведенные примеры архитектур в ходе тестов показали неплохие результаты и могут быть применены в решении практических задач. По каждой из моделей было проведено порядка 20-30 тестов по изменению их параметров. Возможно в следующих публикациях приведу подробные диапазоны тестирования представленных моделей. Спасибо за внимание! =========== Источник: habr.com =========== Похожие новости:
Машинное обучение ), #_iskusstvennyj_intellekt ( Искусственный интеллект ) |
|
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 23:10
Часовой пояс: UTC + 5