[Алгоритмы, Apache, Машинное обучение, Hadoop] Масштабирование итеративных алгоритмов в Spark (перевод)
Автор
Сообщение
news_bot ®
Стаж: 6 лет 9 месяцев
Сообщений: 27286
Итеративные алгоритмы широко применяются в машинном обучении, связанных компонентах, ранжировании страниц и т.д. Эти алгоритмы усложняются итерациями, размеры данных на каждой итерации увеличивается, и сделать их отказоустойчивыми на каждой итерации непросто.В этой статье я бы подробно остановился на некоторых моментах, которые необходимо учитывать при работе с этими задачами. Мы использовали Spark для реализации нескольких итерационных алгоритмов, таких как построение связанных компонентов, обход больших связанных компонентов и т.д. Ниже приведен мой опыт работы в лабораториях Walmart по построению связанных компонентов для 60 миллиардов узлов клиентской идентификации.
Количество итераций никогда не предопределено, всегда есть условие завершения ?.Типы итеративных алгоритмовКонвергентные данные: Здесь мы видим, что с каждой итерацией количество данных уменьшается, т.е. мы начинаем 1-ю итерацию с огромными наборами данных, а размер данных уменьшается с увеличением количества итераций. Основной задачей будет работа с огромными наборами данных в первых нескольких итерациях, и после того, как набор данных значительно уменьшится, можно будет легко справляться с дальнейшими итерациями до их завершения.Расходящиеся данные: Количество данных увеличивается при каждой итерации, и иногда они могут появляться быстрее и сделать невозможной дальнейшую работу. Для работы этих алгоритмов необходимы такие ограничения, как ограничения по количеству итераций, начальному размеру данных, вычислительной мощности и т.д.Аналогичные данные: На каждой итерации у нас были бы более или менее одинаковые данные, и с таким алгоритмом было бы очень легко работать.Инкрементные данные: На каждой итерации у нас могут появляться новые данные, особенно в ML у нас могут появляться новые обучающие наборы данных с периодическими интервалами.Препятствия
- RDD линии: Одним из распространенных способов сохранения отказоустойчивости системы является хранение копий данных в разных местах, чтобы в случае падения одного узла у нас была копия, которая помогала бы до тех пор, пока узел не восстановится. Но Spark не поддерживает дубликаты данных, а поддерживает линейный график преобразований, выполненных на данных в драйвере. Поэтому такой линейный график был бы полезен, если какой-либо фрагмент данных отсутствует, он может построить его обратно с помощью линейного графика, следовательно, Spark является отказоустойчивым. По мере того, как линейный график становится большим, становится трудно строить данные обратно, так как количество итераций увеличивается.
- Память и дисковый ввод/вывод: В Spark RDD являются непреложными, поэтому на каждой итерации мы будем создавать новую копию преобразованных данных (новый RDD), что увеличит использование Памяти и Диска. По мере того, как итерации будут увеличивать использование диска/памяти исполнителями, это может привести к замедлению работы из-за нехватки памяти и ожиданию, пока GC выполнит очистку. В некоторых случаях куча памяти будет недостаточной и может привести к невозможности выполнения задачи.
- Размер задачи: В некоторых случаях может быть несколько задач, которые могут не подходить для одного исполнителя, или одна задача занимает гораздо больше времени, чем остальные задачи, что может привести к препятствию.
Советы по преодолению вышеуказанных проблем
- Хранение большого линейного графика в памяти, и, в случае сбоя узла, восстановление потерянных наборов данных займет много времени. В таких случаях можно использовать кэширование или запись данных о состоянии в контрольной точке на каждой N итерации. Это сохранит рассчитанный RDD на каждой N итерации (кэширование будет храниться в памяти или на диске исполнителей, запись данных о состоянии в контрольной точке использует HDFS, мы должны принять решение исходя из нашей потребности, так как скорость будет различаться для каждой из них). В случае неудачи RDD вычисляется обратно от последней контрольной точки/кэширования. Вместо использования двух вышеупомянутых методов можно также создать временную таблицу и сохранить вычисленный набор данных, разделенный итерацией. В случае неудачи задания Spark, можно сделать перезапуск с последней N-ой итерации, а преимущество сохранения во временную таблицу состоит в том, что можно избавиться от линейного графика RDD до этой итерации и запустить свежий линейный график с этой точки. По мере того, как линейный график RDD растет в итерационных алгоритмах, нам необходимо строить гибридные решения с использованием кэширования, контрольных точек (см. ссылку [2]) и временных таблиц для различных вариантов использования.
- Как и выше, сохранение во временную таблицу и чтение из временной таблицы может помочь избавиться от линейного графика и очистить память и диск предыдущих RDD. Такая запись и чтение замедляет процесс, но это даст огромное преимущество при работе с большими наборами данных. Особенно при конвергировании наборов данных, нам может понадобиться выполнять этот процесс только в течение первых нескольких итераций и использовать кэширование, когда наборы данных становятся маленькими при работе с итерациями. Экономия во временной таблице в качестве контрольной точки выглядит тривиально, но она не просто действует как контрольная точка. Так как мы избавляемся от истории линейных графов, делая это на периодических итерациях, это уменьшит риск сбоя в работе и сократит время на построение ее обратной копии из потерянных данных.
- Работа с расходящимися данными сложна, так как размер каждой задачи будет увеличиваться с увеличением количества итераций и займет намного больше времени для каждого исполнителя. Поэтому нам нужен фактор для вычисления количества задач в ( i + 1) итерации по сравнению с i-й итерацией таким образом, чтобы размер задачи остался прежним. Например, скажем, количество задач в i-й итерации — 100, и каждая задача обрабатывает около 100 МБ данных. В i+1 итерации размер каждой задачи увеличивается до 150 МБ, и мы можем перетасовать эти 100 задач до 150 задач и оставить 100 МБ на каждую задачу. Таким образом, в расходящихся наборах данных нам необходимо увеличить количество задач, переструктурировав и изменив перетасованные разделы на основе итерации.
- В случаях, когда размер spark задачи огромен, попробуйте увеличить память исполнителя в соответствии с размером задачи. А если нужно выполнить соединения на искаженных наборах данных, где 10% задач занимает 90% времени исполнения и 90% задач выполняются за 10% времени, эти задачи предлагается обрабатывать отдельно, выполняя их в виде двух разных запросов. Нужно определить причину больших задач, и можем ли мы разделить их на две группы, т.е. маленькие и большие задачи. В 1-м запросе мы бы обработали 90% задач, т.к. нет никаких препятствий для их обработки, и это заняло бы 10% времени, как и раньше. В другом запросе мы бы обрабатывали большие задачи (10% задач) с помощью всенаправленного соединения, так как количество таких задач меньше, а также избегали бы перетасовки данных.
Пример: Допустим, у нас есть таблица А и таблица Б. Таблица А — это данные о населении со столбцами user_id, имя, город, штат. Таблица B — это то, что группирует данные со столбцами user_id, group_id. Например, мы пытаемся найти 5 крупнейших городов с наибольшим количеством используемых групп. В этом примере могут быть тупиковые ситуации, как города с большим количеством населения могут быть большой задачей, пользователи с большим количеством групп могут привести к большим задачам. Для решения этих тупиковых ситуаций, объединение между этими таблицами может быть сделано в двух запросах. Мы можем отфильтровать больших пользователей с большим количеством групп (скажем, порог в 1000 групп на пользователя) и относиться к ним как к большим задачам. И выполнять соединения отдельно для больших пользователей, используя всенаправленное объединение, так как количество больших пользователей будет мало по сравнению с общими данными. Аналогичным образом, для остальных пользователей выполняйте тасовку объединения и объединяйте результаты и агрегируйте по городам, чтобы найти 5 лучших городов.
А прямо сейчас в OTUS открыт набор на курс «Экосистема Hadoop, Spark, Hive». Всех желающих приглашаем записаться на бесплатный демо-урок по теме «Spark Streaming».
ЗАБРАТЬ СКИДКУ
===========
Источник:
habr.com
===========
===========
Автор оригинала: Pruthvi Raj
===========Похожие новости:
- [Python, Программирование, Алгоритмы, Машинное обучение, Искусственный интеллект] Нейронная Сеть CLIP от OpenAI: Классификатор, который не нужно обучать. Да здравствует Обучение без Обучения
- [Информационная безопасность, Машинное обучение] Как самому разработать систему обнаружения компьютерных атак на основе машинного обучения
- [Data Engineering] Руководство по столбчатым форматам файлов в Spark и Hadoop для начинающих (перевод)
- [Big Data, Искусственный интеллект, Финансы в IT] Меняющаяся роль искусственного интеллекта на финансовых рынках (перевод)
- [Программирование, Алгоритмы, Go] Algorithms in Go: Merge Intervals
- [Разработка веб-сайтов, JavaScript, Программирование, Алгоритмы, Читальный зал] Библиотека Frontend-разработчика, часть 4: Алгоритмы
- [Программирование, Облачные сервисы, Микросервисы] Введение в паттерн распределенной трассировки (перевод)
- [Управление продуктом] Метрики продуктивности команды
- [Высокая производительность, Настройка Linux, Тестирование IT-систем] Бинарники BPF: BTF, CO-RE и будущее средств оценки производительности BPF (перевод)
- [Машинное обучение, Учебный процесс в IT, Образование за рубежом, Интервью] «Что послушать»: какие темы вошли в первый сезон подкаста о науке и технологиях «ITMO Research_»
Теги для поиска: #_algoritmy (Алгоритмы), #_apache, #_mashinnoe_obuchenie (Машинное обучение), #_hadoop, #_spark, #_hadoop, #_hive, #_blog_kompanii_otus._onlajnobrazovanie (
Блог компании OTUS. Онлайн-образование
), #_algoritmy (
Алгоритмы
), #_apache, #_mashinnoe_obuchenie (
Машинное обучение
), #_hadoop
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 22:17
Часовой пояс: UTC + 5
Автор | Сообщение |
---|---|
news_bot ®
Стаж: 6 лет 9 месяцев |
|
Итеративные алгоритмы широко применяются в машинном обучении, связанных компонентах, ранжировании страниц и т.д. Эти алгоритмы усложняются итерациями, размеры данных на каждой итерации увеличивается, и сделать их отказоустойчивыми на каждой итерации непросто.В этой статье я бы подробно остановился на некоторых моментах, которые необходимо учитывать при работе с этими задачами. Мы использовали Spark для реализации нескольких итерационных алгоритмов, таких как построение связанных компонентов, обход больших связанных компонентов и т.д. Ниже приведен мой опыт работы в лабораториях Walmart по построению связанных компонентов для 60 миллиардов узлов клиентской идентификации. Количество итераций никогда не предопределено, всегда есть условие завершения ?.Типы итеративных алгоритмовКонвергентные данные: Здесь мы видим, что с каждой итерацией количество данных уменьшается, т.е. мы начинаем 1-ю итерацию с огромными наборами данных, а размер данных уменьшается с увеличением количества итераций. Основной задачей будет работа с огромными наборами данных в первых нескольких итерациях, и после того, как набор данных значительно уменьшится, можно будет легко справляться с дальнейшими итерациями до их завершения.Расходящиеся данные: Количество данных увеличивается при каждой итерации, и иногда они могут появляться быстрее и сделать невозможной дальнейшую работу. Для работы этих алгоритмов необходимы такие ограничения, как ограничения по количеству итераций, начальному размеру данных, вычислительной мощности и т.д.Аналогичные данные: На каждой итерации у нас были бы более или менее одинаковые данные, и с таким алгоритмом было бы очень легко работать.Инкрементные данные: На каждой итерации у нас могут появляться новые данные, особенно в ML у нас могут появляться новые обучающие наборы данных с периодическими интервалами.Препятствия
А прямо сейчас в OTUS открыт набор на курс «Экосистема Hadoop, Spark, Hive». Всех желающих приглашаем записаться на бесплатный демо-урок по теме «Spark Streaming».
ЗАБРАТЬ СКИДКУ =========== Источник: habr.com =========== =========== Автор оригинала: Pruthvi Raj ===========Похожие новости:
Блог компании OTUS. Онлайн-образование ), #_algoritmy ( Алгоритмы ), #_apache, #_mashinnoe_obuchenie ( Машинное обучение ), #_hadoop |
|
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 22:17
Часовой пояс: UTC + 5