[Python, Программирование] Искусство написания циклов на Python (перевод)
Автор
Сообщение
news_bot ®
Стаж: 6 лет 9 месяцев
Сообщений: 27286
Цикл for — самый базовый инструмент потока управления большинства языков программирования. Например, простой цикл for на C выглядит так:
int i;
for (i=0;i<N;i++)
{
//do something
}
Не существует более изящного способа написания цикла for на C. В сложных случаях обычно приходится писать уродливые вложенные циклы или задавать множество вспомогательных переменных (например, как i в показанном выше коде).
К счастью, в Python всё более удобно. В этом языке есть множество хитростей, позволяющих писать более изящные циклы, которые упрощают нашу жизнь. В Python вполне можно избежать вложенных циклов и вспомогательных переменных, и мы даже можем самостоятельно настраивать цикл for.
Эта статья познакомит вас с самыми полезными трюками по написанию циклов на Python. Надеюсь, она поможет вам ощутить красоту этого языка.
Одновременно получаем значения и индексы
Частым примером использования цикла for является получение индексов и значений из списка. Когда я начинал изучать Python, то писал свой код таким образом:
for i in range(len(my_list)):
print(i, my_list[i])
Разумеется, он работал. Но это решение не в стиле Python. Спустя несколько месяцев я узнал стандартный способ реализации в стиле Python:
for i, v in enumerate(my_list):
print(i, v)
Как мы видим, встроенная функция enumerate упрощает нам жизнь.
Как избежать вложенных циклов с помощью функции Product
Вложенные циклы — это настоящая головная боль. Они могут снизить читаемость кода и усложнить его понимание. Например, прерывание вложенных циклов обычно реализовать не так просто. Нам нужно знать, где прерван самый внутренний цикл, второй по порядку внутренний цикл, и так далее.
К счастью, в Python существует потрясающая функция product из встроенного модуля itertools. Мы можем использовать её, чтобы не писать множество вложенных циклов.
Давайте убедимся в её полезности на простом примере:
list_a = [1, 2020, 70]
list_b = [2, 4, 7, 2000]
list_c = [3, 70, 7]
for a in list_a:
for b in list_b:
for c in list_c:
if a + b + c == 2077:
print(a, b, c)
# 70 2000 7
Как мы видим, нам требуется три вложенных цикла, чтобы получить из трёх списков три числа, сумма которых равна 2077. Код не очень красив.
А теперь давайте попробуем использовать функцию product.
from itertools import product
list_a = [1, 2020, 70]
list_b = [2, 4, 7, 2000]
list_c = [3, 70, 7]
for a, b, c in product(list_a, list_b, list_c):
if a + b + c == 2077:
print(a, b, c)
# 70 2000 7
Как мы видим, благодаря использованию функции product достаточно всего одного цикла.
Так как функция product генерирует прямое произведение входящих итерируемых данных, она позволяет нам во многих случаях избежать вложенных циклов.
Используем модуль Itertools для написания красивых циклов
На самом деле, функция product — это только вершина айсберга. Если вы изучите встроенный модуль Python itertools, то перед вами откроется целый новый мир. Этот набор инструментов содержит множество полезных методов, покрывающих наши потребности при работе с циклами. Их полный список можно найти в официальной документации. Давайте рассмотрим несколько примеров.
Создаём бесконечный цикл
Существует не меньше трёх способов создания бесконечного цикла:
1. При помощи функции count:
natural_num = itertools.count(1)
for n in natural_num:
print(n)
# 1,2,3,...
2. Функцией cycle:
many_yang = itertools.cycle('Yang')
for y in many_yang:
print(y)
# 'Y','a','n','g','Y','a','n','g',...
3. Через функцию repeat:
many_yang = itertools.repeat('Yang')
for y in many_yang:
print(y)
# 'Yang','Yang',...
Комбинируем несколько итераторов в один
Функция chain() позволяет объединить несколько итераторов в один.
from itertools import chain
list_a = [1, 22]
list_b = [7, 20]
list_c = [3, 70]
for i in chain(list_a, list_b, list_c):
print(i)
# 1,22,7,20,3,70
Выделяем соседние дублирующиеся элементы
Функция groupby используется для выделения соседних дублирующихся элементов в итераторе и их соединения.
from itertools import groupby
for key, group in groupby('YAaANNGGG'):
print(key, list(group))
# Y ['Y']
# A ['A']
# a ['a']
# A ['A']
# N ['N', 'N']
# G ['G', 'G', 'G']
Как показано выше, соседние одинаковые символы соединены вместе. Более того, мы можем указать функции groupby способ определения идентичности двух элементов:
from itertools import groupby
for key, group in groupby('YAaANNGGG', lambda x: x.upper()):
print(key, list(group))
# Y ['Y']
# A ['A', 'a', 'A']
# N ['N', 'N']
# G ['G', 'G', 'G']
Самостоятельно настраиваем цикл
Изучив представленные выше примеры, давайте задумаемся о том, почему циклы for в Python настолько гибки и изящны. Насколько я понимаю, это из-за того, что мы можем применять в итераторе цикла for функции. Во всех рассмотренных выше примерах в итераторе всего лишь используются специальные функции. Все трюки имеют одинаковый шаблон:
for x in function(iterator)
Сам встроенный модуль itertools всего лишь реализует за нас самые распространённые функции. Если мы забудем функцию или не сможем найти нужную нам, то можем просто написать её самостоятельно. Если быть более точным, то эти функции являются генераторами. Именно поэтому мы можем генерировать с их помощью бесконечные циклы.
По сути, мы можем настроить цикл for под себя, как сделали бы это с настраиваемым генератором.
Давайте рассмотрим простой пример:
def even_only(num):
for i in num:
if i % 2 == 0:
yield i
my_list = [1, 9, 3, 4, 2, 5]
for n in even_only(my_list):
print(n)
# 4
# 2
Как видно из приведённого выше примера, мы определили генератор под названием even_only. Если мы используем этот генератор в цикле for, итерация будет происходить только для чётных чисел из списка.
Разумеется, этот пример приведён только для объяснения. Существуют и другие способы выполнения тех же действий, например, использование представления списков.
my_list = [1, 9, 3, 4, 2, 5]
for n in (i for i in my_list if not i % 2):
print(n)
# 4
# 2
Вывод
Задачу создания циклов на Python можно решать очень гибко и изящно. Чтобы писать удобные и простые циклы, мы можем использовать встроенные инструменты или даже самостоятельно определять генераторы.
На правах рекламы
Надёжный сервер в аренду, создавайте свою конфигурацию в пару кликов и начинайте работать уже через минуту. Всё будет работать без сбоев и с очень высоким uptime!
Присоединяйтесь к нашему чату в Telegram.
оригинал
===========
Источник:
habr.com
===========
===========
Автор оригинала: Yang Zhou
===========Похожие новости:
- [Программирование, Управление разработкой] О сложности в работе программиста
- [Программирование, Assembler, *nix, Алгоритмы, История IT] Процессор, эмулирующий сам себя — может быть быстрее самого себя
- [JavaScript, Программирование, Scala] Ко-вариантность и типы данных
- [Мессенджеры, ООП, Функциональное программирование, Kotlin, Natural Language Processing] Распознавание команд
- [Python] Автоматизация тестирования на Python: Шесть способов тестировать эффективно (перевод)
- [Программирование, Go, Микросервисы] Как писать кодогенераторы в Go
- [Разработка веб-сайтов, JavaScript, Программирование, Совершенный код] Погружение во внедрение зависимостей (DI), или как взломать Матрицу
- [Open source, Виртуализация, Облачные вычисления, Учебный процесс в IT] Новые функции в Python 3.0, шпаргалка по grep, бесплатные онлайн-курсы и вторая часть Red Hat Summit Virtual Experience
- [Программирование, Julia, Искусственный интеллект, Data Engineering] Новая система автоматически очищает массивы ненадёжных данных (перевод)
- [Python, Машинное обучение, Искусственный интеллект, TensorFlow] Нейродайджест: главное из области машинного обучения за май 2021
Теги для поиска: #_python, #_programmirovanie (Программирование), #_python, #_tsikly (циклы), #_programmirovanie (программирование), #_blog_kompanii_vdsina.ru (
Блог компании VDSina.ru
), #_python, #_programmirovanie (
Программирование
)
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 07:14
Часовой пояс: UTC + 5
Автор | Сообщение |
---|---|
news_bot ®
Стаж: 6 лет 9 месяцев |
|
Цикл for — самый базовый инструмент потока управления большинства языков программирования. Например, простой цикл for на C выглядит так: int i;
for (i=0;i<N;i++) { //do something } Не существует более изящного способа написания цикла for на C. В сложных случаях обычно приходится писать уродливые вложенные циклы или задавать множество вспомогательных переменных (например, как i в показанном выше коде). К счастью, в Python всё более удобно. В этом языке есть множество хитростей, позволяющих писать более изящные циклы, которые упрощают нашу жизнь. В Python вполне можно избежать вложенных циклов и вспомогательных переменных, и мы даже можем самостоятельно настраивать цикл for. Эта статья познакомит вас с самыми полезными трюками по написанию циклов на Python. Надеюсь, она поможет вам ощутить красоту этого языка. Одновременно получаем значения и индексы Частым примером использования цикла for является получение индексов и значений из списка. Когда я начинал изучать Python, то писал свой код таким образом: for i in range(len(my_list)):
print(i, my_list[i]) Разумеется, он работал. Но это решение не в стиле Python. Спустя несколько месяцев я узнал стандартный способ реализации в стиле Python: for i, v in enumerate(my_list):
print(i, v) Как мы видим, встроенная функция enumerate упрощает нам жизнь. Как избежать вложенных циклов с помощью функции Product Вложенные циклы — это настоящая головная боль. Они могут снизить читаемость кода и усложнить его понимание. Например, прерывание вложенных циклов обычно реализовать не так просто. Нам нужно знать, где прерван самый внутренний цикл, второй по порядку внутренний цикл, и так далее. К счастью, в Python существует потрясающая функция product из встроенного модуля itertools. Мы можем использовать её, чтобы не писать множество вложенных циклов. Давайте убедимся в её полезности на простом примере: list_a = [1, 2020, 70]
list_b = [2, 4, 7, 2000] list_c = [3, 70, 7] for a in list_a: for b in list_b: for c in list_c: if a + b + c == 2077: print(a, b, c) # 70 2000 7 Как мы видим, нам требуется три вложенных цикла, чтобы получить из трёх списков три числа, сумма которых равна 2077. Код не очень красив. А теперь давайте попробуем использовать функцию product. from itertools import product
list_a = [1, 2020, 70] list_b = [2, 4, 7, 2000] list_c = [3, 70, 7] for a, b, c in product(list_a, list_b, list_c): if a + b + c == 2077: print(a, b, c) # 70 2000 7 Как мы видим, благодаря использованию функции product достаточно всего одного цикла. Так как функция product генерирует прямое произведение входящих итерируемых данных, она позволяет нам во многих случаях избежать вложенных циклов. Используем модуль Itertools для написания красивых циклов На самом деле, функция product — это только вершина айсберга. Если вы изучите встроенный модуль Python itertools, то перед вами откроется целый новый мир. Этот набор инструментов содержит множество полезных методов, покрывающих наши потребности при работе с циклами. Их полный список можно найти в официальной документации. Давайте рассмотрим несколько примеров. Создаём бесконечный цикл Существует не меньше трёх способов создания бесконечного цикла: 1. При помощи функции count: natural_num = itertools.count(1)
for n in natural_num: print(n) # 1,2,3,... 2. Функцией cycle: many_yang = itertools.cycle('Yang')
for y in many_yang: print(y) # 'Y','a','n','g','Y','a','n','g',... 3. Через функцию repeat: many_yang = itertools.repeat('Yang')
for y in many_yang: print(y) # 'Yang','Yang',... Комбинируем несколько итераторов в один Функция chain() позволяет объединить несколько итераторов в один. from itertools import chain
list_a = [1, 22] list_b = [7, 20] list_c = [3, 70] for i in chain(list_a, list_b, list_c): print(i) # 1,22,7,20,3,70 Выделяем соседние дублирующиеся элементы Функция groupby используется для выделения соседних дублирующихся элементов в итераторе и их соединения. from itertools import groupby
for key, group in groupby('YAaANNGGG'): print(key, list(group)) # Y ['Y'] # A ['A'] # a ['a'] # A ['A'] # N ['N', 'N'] # G ['G', 'G', 'G'] Как показано выше, соседние одинаковые символы соединены вместе. Более того, мы можем указать функции groupby способ определения идентичности двух элементов: from itertools import groupby
for key, group in groupby('YAaANNGGG', lambda x: x.upper()): print(key, list(group)) # Y ['Y'] # A ['A', 'a', 'A'] # N ['N', 'N'] # G ['G', 'G', 'G'] Самостоятельно настраиваем цикл Изучив представленные выше примеры, давайте задумаемся о том, почему циклы for в Python настолько гибки и изящны. Насколько я понимаю, это из-за того, что мы можем применять в итераторе цикла for функции. Во всех рассмотренных выше примерах в итераторе всего лишь используются специальные функции. Все трюки имеют одинаковый шаблон: for x in function(iterator)
Сам встроенный модуль itertools всего лишь реализует за нас самые распространённые функции. Если мы забудем функцию или не сможем найти нужную нам, то можем просто написать её самостоятельно. Если быть более точным, то эти функции являются генераторами. Именно поэтому мы можем генерировать с их помощью бесконечные циклы. По сути, мы можем настроить цикл for под себя, как сделали бы это с настраиваемым генератором. Давайте рассмотрим простой пример: def even_only(num):
for i in num: if i % 2 == 0: yield i my_list = [1, 9, 3, 4, 2, 5] for n in even_only(my_list): print(n) # 4 # 2 Как видно из приведённого выше примера, мы определили генератор под названием even_only. Если мы используем этот генератор в цикле for, итерация будет происходить только для чётных чисел из списка. Разумеется, этот пример приведён только для объяснения. Существуют и другие способы выполнения тех же действий, например, использование представления списков. my_list = [1, 9, 3, 4, 2, 5]
for n in (i for i in my_list if not i % 2): print(n) # 4 # 2 Вывод Задачу создания циклов на Python можно решать очень гибко и изящно. Чтобы писать удобные и простые циклы, мы можем использовать встроенные инструменты или даже самостоятельно определять генераторы. На правах рекламы Надёжный сервер в аренду, создавайте свою конфигурацию в пару кликов и начинайте работать уже через минуту. Всё будет работать без сбоев и с очень высоким uptime! Присоединяйтесь к нашему чату в Telegram. оригинал =========== Источник: habr.com =========== =========== Автор оригинала: Yang Zhou ===========Похожие новости:
Блог компании VDSina.ru ), #_python, #_programmirovanie ( Программирование ) |
|
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 07:14
Часовой пояс: UTC + 5