[JavaScript, Научно-популярное, Космонавтика] Для чего космическому кораблю крылья?
Автор
Сообщение
news_bot ®
Стаж: 6 лет 9 месяцев
Сообщений: 27286
В предыдущей статье удалось показать, что вход в атмосферу с подъемной силой позволяет уменьшить перегрузки и тепловое воздействие при торможении в атмосфере. Но какие еще преимущества дает наличие аэродинамического качества у космического корабля? И как можно увеличить аэродинамическое совершенство корабля ?Облик корабля с несущим корпусомСамый простой вариант корабля с несущим корпусом - конус с притупленным носком. Носовое притупление создает отсоединенный скачок на безопасном (для теплозащиты корпуса) расстоянии, а избыточное давление от торможения воздуха формирует подъемную силу на корпусе. Для расчета такой компоновки есть достаточно простые аналитические зависимости, позволяющие при помощи терпения и любого доступного расчетного инструмента получить набор аэродинамических характеристик ( Н.С. Аржаников, Г.С. Садекова, "Аэродинамика летательных аппаратов", Глава 11)Основным ограничением на облик нашего возвращаемого КА будет полезный объем (который должен быть не хуже 10,4 м3 кабины Apollo ). Длина, м9,6Масса, кг5460Площадь миделя, м27,065*Максимальное качество, -1,3* с диаметром миделя в 3 метра такой корабль может разместиться на Falcon-9 (диаметр миделя - 3,7 м)Внешний вид спускаемого аппарата
Аэродинамические характеристики
Ближайший аналог - грузовой модуль программы "Constellation"
В таких модуля предполагалось доставлять на Марс компоненты пилотируемой экспедиции. Ожидаемое аэродинамическое качество ~ 0,5Сценарий-1. Простой спуск с орбитыВ предыдущей статье рассматривалось торможение в атмосфере после возвращения с Луны на скорости, близкой к 2-ой космической. Рассмотрим более насущную задачу - возврат космического корабля с низкой околоземной орбиты на скорости чуть меньше 1-ой космической. Параметры входа в атмосферу V = 7650 м/с, H = 120 км, Th = -1,5 град.Траектория спуска без бокового маневра
Корабль-капсула начнет интенсивное торможение (с перегрузкой более 1g) спустя 206 секунд на высоте 69,5 км. На 225 секунде начнется планирование с малым аэродинамическим качеством (~0,17-0,18), корабль будет интенсивно терять скорость и приземлится на 654 секунде после входа в атмосферу, пройдя 2560 км.Корабль с несущим корпусом за счет намного более обтекаемой формы будет терять скорость медленнее, и перегрузки составят ~ 0,5g. К 271 секунде полета подъемная сила, создаваемая нижней поверхности корпуса, позволит кораблю начать отскок с высоты 57,5 км до 72,8 км (похожим образом должен был глиссировать Silbervogel Э. Зенгера ). К 759 секунде корабль вернется на эшелон равновесного планирования (~ 61,7 км в начальной точке), и к 2150 секунде на высоте в 21,6 км скорость корабля снизится до звуковой (310 м/с).Поскольку конический фюзеляж не обеспечивает достаточное для посадки аэродинамическое качество, то траектория перейдет в пикирующую (~ 65 градусов). Приземление произойдет на 2342 секунде после входа в атмосферу, при этом корабль пройдет расстояние в 11400 км. Максимальная продольная перегрузка составит 1,37g, поперечная - 0,94g.Сценарий-2. Боковой маневрТеперь усложним задачу и добавим маневр крена в начале атмосферного торможения КА. С 250 по 350 секунду полета космический корабль развернется по крену на 60 градусов, чтобы большая часть подъемной силы корпуса была направлена вбок.Для Apollo смещение в боковой плоскости составит 0,23 градуса широты - траектория отклонится к югу на 25,6 км. Поскольку подъемная сила развернута вбок, то спуск в атмосферу происходит интенсивнее, и пройденный путь уменьшится - корабль приземлится на 2340 км от точки входа.Боковой маневр в координата "долгота-широта"
Жирная темно-синяя линия - Apollo; красная - "несущий" КА, маневр аналогичен Apollo; Синяя - "несущий" КА, максимальный маневр по курсу.Корабль с несущим корпусом сместится на 4,25 градусов широты - на 472,5 километров к югу. Пройденный путь составит 9852 км. Если продлить участок крена до 1050 секунды, то смещение в боковом направлении составит 1579 км, суммарное пройденное расстояние - 6646 км. Дальнейшее увеличение продолжительности маневра (или угла крена) приводит к более раннему торможению и еще большему падению дальностиПолученные цифры хорошо согласуются с материалами веб-журнала "Инженерный журнал: наука и инновации". При сходе с НОО маневр "капсулы" - <100 км, тогда как зона маневра бескрылого корабля с несущим корпусом уже составляет порядка 1000 - 1500 км. Поскольку на маневр расходуется часть подъемной силы космического аппарата, то лучший способ увеличения маневренности - рост аэродинамического качества за счет "сплющивания" фюзеляжа космического корабля, использования крыльев и стабилизаторов.ВыводыТраектория корабля с достаточно высоким (~ 1 и больше) аэродинамическим качеством радикальном отличается от траектории "капсульного" корабля. Продолжительный полет с гиперзвуковыми (~ 6000 м/с в начале участка равновесного планирования) скоростями требует от теплозащиты способность выдерживать умеренные (по сравнению с капсульными кораблями) тепловые нагрузки долгое (~ 1800 - 2000 с) время.Поскольку излучение - основной канал сброса тепла, то обшивка корабля на наветренной стороне должна обладать высоким коэффициентом черноты (и низкой теплопроводностью).Траектории "несущего" КА с маневрами по крену разной продолжительности
Зеленая линия - планирование без боковых маневров, красная - маневр продолжительностью 100 с, синяя - 800 сПоскольку маневр в путевой плоскости сопровождается снижением высоты (см. графики чуть выше) и увеличенным сопротивлением в более плотных слоях атмосферы, то можно уменьшать время атмосферного участка (и продолжительность теплового воздействия) "змейкой" с одним или несколькими участками крена в противоположных направлениях.Хотя аэродинамическое качество 1 - 1,5 обеспечивает высокие летные качества при гиперзвуковом полете в верхних слоях атмосферы, но его недостаточно для мягкой посадки без парашюта или тормозных двигателей. Возможное решение проблемы - выдвижные крылья, находящиеся в аэродинамической тени и/или спрятанные в корпус.
FDL-7
Экспериментальный аппарат НАСА для отработки "несущих" корпусов с раскладным крыломСтраница официального сайта НАСА с описанием "несущих" корпусовПри достижении трансзвуковых скоростей крылья раскрываются и увеличивают несущую поверхность и аэродинамическое качество. Альтернативой может быть "скользящее" крыло или посадка с помощью параплана.
AD-1. Экспериментальный самолет НАСА для отработки "скользящего" крылаИсследования НАСА по "скользящим" и поворотным крыльям.Немного векторной алгебрыПара моментов, которые облегчили мне переход от "плоской" баллистической модели к полноценному расчету в трехмерном пространстве вокруг шарообразной ЗемлиПоворот относительно произвольного вектора
Особенно полезен при вычислении направления подъемной силы (сопротивление направлено против вектора скорости, и с ним все ясно)Угол между двумя векторами с сохранением знака
Вся магия - в сохраняющем знак векторе cross и его скалярном произведении с вектором, не лежащим в плоскости, образуемой векторами U и VРепо с программой-моделью и исходными данными живет на моем гитхабе. Можно потыкать палочкой, можно форкнуть - вдруг кому-то еще захочется поиграться
===========
Источник:
habr.com
===========
Похожие новости:
- [Производство и разработка электроники, Научно-популярное, DIY или Сделай сам] Цифровой рентген: We need you «username»
- [Машинное обучение, Читальный зал, Научно-популярное, Искусственный интеллект] Директор по ИИ в Tesla написал рассказ (перевод)
- [Научно-популярное, Будущее здесь, Урбанизм, Инженерные системы] Потеснить море. Как и зачем строят искусственные острова
- [Разработка веб-сайтов, JavaScript, Программирование, TypeScript] Совет #1 по ознакомлению с новыми кодовыми базами JavaScript (перевод)
- [Научно-популярное, Космонавтика, Мультикоптеры] Марсолет «Изобретательность» высадился на поверхность планеты и готовится к первому полету
- [Научно-популярное] В пустыне Калахари нашли коллекцию кристаллов возрастом около 105 тысяч лет
- [Космонавтика, Транспорт] Sierra Nevada создаст пилотируемый космический самолет Dream Chaser
- [Научно-популярное, Космонавтика] Новые отчеты по достижениям России и Китая в области космического оружия. SpaceNews
- [JavaScript] Для чего нам нужно Moment.js и Day.js
- [Научно-популярное, Энергия и элементы питания, Физика] Испытания EmDrive показали, что двигатель не создает тяги
Теги для поиска: #_javascript, #_nauchnopopuljarnoe (Научно-популярное), #_kosmonavtika (Космонавтика), #_kosmicheskie_korabli (космические корабли), #_aerodinamika (аэродинамика), #_orbitalnyj_samolet (орбитальный самолет), #_traektorii (траектории), #_javascript, #_nauchnopopuljarnoe (
Научно-популярное
), #_kosmonavtika (
Космонавтика
)
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 09:53
Часовой пояс: UTC + 5
Автор | Сообщение |
---|---|
news_bot ®
Стаж: 6 лет 9 месяцев |
|
В предыдущей статье удалось показать, что вход в атмосферу с подъемной силой позволяет уменьшить перегрузки и тепловое воздействие при торможении в атмосфере. Но какие еще преимущества дает наличие аэродинамического качества у космического корабля? И как можно увеличить аэродинамическое совершенство корабля ?Облик корабля с несущим корпусомСамый простой вариант корабля с несущим корпусом - конус с притупленным носком. Носовое притупление создает отсоединенный скачок на безопасном (для теплозащиты корпуса) расстоянии, а избыточное давление от торможения воздуха формирует подъемную силу на корпусе. Для расчета такой компоновки есть достаточно простые аналитические зависимости, позволяющие при помощи терпения и любого доступного расчетного инструмента получить набор аэродинамических характеристик ( Н.С. Аржаников, Г.С. Садекова, "Аэродинамика летательных аппаратов", Глава 11)Основным ограничением на облик нашего возвращаемого КА будет полезный объем (который должен быть не хуже 10,4 м3 кабины Apollo ). Длина, м9,6Масса, кг5460Площадь миделя, м27,065*Максимальное качество, -1,3* с диаметром миделя в 3 метра такой корабль может разместиться на Falcon-9 (диаметр миделя - 3,7 м)Внешний вид спускаемого аппарата Аэродинамические характеристики Ближайший аналог - грузовой модуль программы "Constellation" В таких модуля предполагалось доставлять на Марс компоненты пилотируемой экспедиции. Ожидаемое аэродинамическое качество ~ 0,5Сценарий-1. Простой спуск с орбитыВ предыдущей статье рассматривалось торможение в атмосфере после возвращения с Луны на скорости, близкой к 2-ой космической. Рассмотрим более насущную задачу - возврат космического корабля с низкой околоземной орбиты на скорости чуть меньше 1-ой космической. Параметры входа в атмосферу V = 7650 м/с, H = 120 км, Th = -1,5 град.Траектория спуска без бокового маневра Корабль-капсула начнет интенсивное торможение (с перегрузкой более 1g) спустя 206 секунд на высоте 69,5 км. На 225 секунде начнется планирование с малым аэродинамическим качеством (~0,17-0,18), корабль будет интенсивно терять скорость и приземлится на 654 секунде после входа в атмосферу, пройдя 2560 км.Корабль с несущим корпусом за счет намного более обтекаемой формы будет терять скорость медленнее, и перегрузки составят ~ 0,5g. К 271 секунде полета подъемная сила, создаваемая нижней поверхности корпуса, позволит кораблю начать отскок с высоты 57,5 км до 72,8 км (похожим образом должен был глиссировать Silbervogel Э. Зенгера ). К 759 секунде корабль вернется на эшелон равновесного планирования (~ 61,7 км в начальной точке), и к 2150 секунде на высоте в 21,6 км скорость корабля снизится до звуковой (310 м/с).Поскольку конический фюзеляж не обеспечивает достаточное для посадки аэродинамическое качество, то траектория перейдет в пикирующую (~ 65 градусов). Приземление произойдет на 2342 секунде после входа в атмосферу, при этом корабль пройдет расстояние в 11400 км. Максимальная продольная перегрузка составит 1,37g, поперечная - 0,94g.Сценарий-2. Боковой маневрТеперь усложним задачу и добавим маневр крена в начале атмосферного торможения КА. С 250 по 350 секунду полета космический корабль развернется по крену на 60 градусов, чтобы большая часть подъемной силы корпуса была направлена вбок.Для Apollo смещение в боковой плоскости составит 0,23 градуса широты - траектория отклонится к югу на 25,6 км. Поскольку подъемная сила развернута вбок, то спуск в атмосферу происходит интенсивнее, и пройденный путь уменьшится - корабль приземлится на 2340 км от точки входа.Боковой маневр в координата "долгота-широта" Жирная темно-синяя линия - Apollo; красная - "несущий" КА, маневр аналогичен Apollo; Синяя - "несущий" КА, максимальный маневр по курсу.Корабль с несущим корпусом сместится на 4,25 градусов широты - на 472,5 километров к югу. Пройденный путь составит 9852 км. Если продлить участок крена до 1050 секунды, то смещение в боковом направлении составит 1579 км, суммарное пройденное расстояние - 6646 км. Дальнейшее увеличение продолжительности маневра (или угла крена) приводит к более раннему торможению и еще большему падению дальностиПолученные цифры хорошо согласуются с материалами веб-журнала "Инженерный журнал: наука и инновации". При сходе с НОО маневр "капсулы" - <100 км, тогда как зона маневра бескрылого корабля с несущим корпусом уже составляет порядка 1000 - 1500 км. Поскольку на маневр расходуется часть подъемной силы космического аппарата, то лучший способ увеличения маневренности - рост аэродинамического качества за счет "сплющивания" фюзеляжа космического корабля, использования крыльев и стабилизаторов.ВыводыТраектория корабля с достаточно высоким (~ 1 и больше) аэродинамическим качеством радикальном отличается от траектории "капсульного" корабля. Продолжительный полет с гиперзвуковыми (~ 6000 м/с в начале участка равновесного планирования) скоростями требует от теплозащиты способность выдерживать умеренные (по сравнению с капсульными кораблями) тепловые нагрузки долгое (~ 1800 - 2000 с) время.Поскольку излучение - основной канал сброса тепла, то обшивка корабля на наветренной стороне должна обладать высоким коэффициентом черноты (и низкой теплопроводностью).Траектории "несущего" КА с маневрами по крену разной продолжительности Зеленая линия - планирование без боковых маневров, красная - маневр продолжительностью 100 с, синяя - 800 сПоскольку маневр в путевой плоскости сопровождается снижением высоты (см. графики чуть выше) и увеличенным сопротивлением в более плотных слоях атмосферы, то можно уменьшать время атмосферного участка (и продолжительность теплового воздействия) "змейкой" с одним или несколькими участками крена в противоположных направлениях.Хотя аэродинамическое качество 1 - 1,5 обеспечивает высокие летные качества при гиперзвуковом полете в верхних слоях атмосферы, но его недостаточно для мягкой посадки без парашюта или тормозных двигателей. Возможное решение проблемы - выдвижные крылья, находящиеся в аэродинамической тени и/или спрятанные в корпус. FDL-7 Экспериментальный аппарат НАСА для отработки "несущих" корпусов с раскладным крыломСтраница официального сайта НАСА с описанием "несущих" корпусовПри достижении трансзвуковых скоростей крылья раскрываются и увеличивают несущую поверхность и аэродинамическое качество. Альтернативой может быть "скользящее" крыло или посадка с помощью параплана. AD-1. Экспериментальный самолет НАСА для отработки "скользящего" крылаИсследования НАСА по "скользящим" и поворотным крыльям.Немного векторной алгебрыПара моментов, которые облегчили мне переход от "плоской" баллистической модели к полноценному расчету в трехмерном пространстве вокруг шарообразной ЗемлиПоворот относительно произвольного вектора Особенно полезен при вычислении направления подъемной силы (сопротивление направлено против вектора скорости, и с ним все ясно)Угол между двумя векторами с сохранением знака Вся магия - в сохраняющем знак векторе cross и его скалярном произведении с вектором, не лежащим в плоскости, образуемой векторами U и VРепо с программой-моделью и исходными данными живет на моем гитхабе. Можно потыкать палочкой, можно форкнуть - вдруг кому-то еще захочется поиграться =========== Источник: habr.com =========== Похожие новости:
Научно-популярное ), #_kosmonavtika ( Космонавтика ) |
|
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 09:53
Часовой пояс: UTC + 5