[Производство и разработка электроники, Химия] Исследователи наконец создали металлические провода из углерода (перевод)
Автор
Сообщение
news_bot ®
Стаж: 6 лет 9 месяцев
Сообщений: 27286
Изображение широкополосной металлической графеновой наноленты (Graphene Nanoribbon, GNR) шириной в 1,6 нанометра, сделанное с помощью сканирующего туннельного микроскопа.
Транзисторы, основанные на углероде, а не на кремние, потенциально могут повысить скорость компьютеров и снизить их энергопотребление более чем в тысячу раз — подумайте, например, о мобильном телефоне, который держит заряд в течение нескольких месяцев. Но набор необходимых материалов, необходимых для создания работающих углеродных цепей, оставался неполным до настоящего момента.
Группа химиков и физиков из Калифорнийского университета в Беркли, наконец, создала последний недостающий элемент — металлическую проволоку, полностью сделанную из углерода. Это в свою очередь, подготовило почву для начала исследований по созданию транзисторов на основе углерода, и в конечном итоге — компьютеров.
Феликс Фишер, профессор химии Калифорнийского университета в Беркли, отметил, что возможность изготавливать все элементы интегральной схемы из одного материала сделает производство легче:
«Это был один из ключевых моментов, которого не хватало в общей картине архитектуры интегральных схем, полностью основанных на углероде».
Металлические провода используются для соединения транзисторов в компьютерной микросхеме — переносят электричество от устройства к устройству и соединяют полупроводниковые элементы внутри блока микросхем.
Группа Калифорнийского университета в Беркли в течение нескольких лет работала над тем, как сделать полупроводники и изоляторы из графеновых нанолент, которые представляют собой узкие одномерные полоски графена толщиной в атом. Структура этих нанолент, полностью состоит из атомов углерода, расположенных в гексагональной сингонии, напоминающем проволочную сетку.
В то время как другие материалы на основе углерода, такие как листы двумерного графена и углеродные нанотрубки могут быть металлическими, у них есть свои недостатки. Например, преобразование листа двумерного графена в полосы нанометрового размера может превратить их в полупроводники или даже изоляторы. Углеродные нанотрубки, которые являются отличными проводниками, не могут быть получены с такой же точностью в больших количествах, как наноленты.
«Наноленты позволяют нам получать доступ к широкому спектру структур, используя восходящее проектирование, что еще невозможно с нанотрубками», — сказал Майкл Кромми, профессор физики Университета Беркли. «Это позволило нам соединить электроны вместе, чтобы создать металлическую наноленту, чего раньше не делали. Это одна из серьезных задач в области технологии графеновых нанолент, и поэтому мы так взволнованы этим».
Наноленты из металлического графена имеют широкую, частично заполненную электронную полосу, характерную для металлов, и могут быть сравнимы по проводимости с двумерным графеном.
«Это первый случай, когда мы можем создать ультратонкий металлический проводник из материалов на основе углерода и это настоящий прорыв», — добавил Фишер.
Кромми, Фишер и их коллеги из Калифорнийского университета в Беркли и Национальной лаборатории Лоуренса Беркли (Berkeley Lab) опубликовали свои выводы в выпуске журнала Science за 25 сентября.
Интегральные схемы на основе кремния использовались в компьютерах в течение десятилетий, регулярно увеличивающейся скоростью работы и производительностью в соответствии с законом Мура, но они уже достигают своего предела скорости насколько быстро они могут переключаться между «нулями» и «единицами». Также становится все труднее снизить энергопотребление; компьютеры уже потребляют значительную часть мирового производства энергии. По словам Фишера, компьютеры на основе углерода потенциально могут переключаться во много раз быстрее, чем кремниевые компьютеры, и потреблять лишь долю от их энергии.
Графен, представляющий собой чистый углерод, являлся ведущим претендентом на создание компьютеров следующего поколения на основе углерода. Однако узкие полоски графена в первую очередь являются полупроводниками, и проблема заключалась в том, чтобы заставить их также работать как изоляторы и металлы, чтобы построить транзисторы на основе углерода.
Несколько лет назад Фишер и Кромми объединились с ученым-теоретиком материаловедом Стивеном Луи, профессором физики Калифорнийского университета в Беркли, чтобы открыть новые способы соединения небольших отрезков наноленты с сохранением всех проводящих свойств.
Два года назад команда продемонстрировала, что, правильно соединив короткие сегменты наноленты, электроны в каждом сегменте могут быть расположены так, чтобы создать новое топологическое состояние — особую квантовую волновую функцию — что приводит к настраиваемым свойствам полупроводника.
В новой работе они используют аналогичную технику для «сшивания» коротких сегментов нанолент, чтобы создать проводящий металлический провод длиной в десятки нанометров и шириной всего лишь в один нанометр.
«Все они спроектированы так, что могут сочетаться друг с другом лишь одним способом. Это как если бы вы взяли пакет с Lego, встряхнули его, и получили полностью собранный автомобиль », — сказал он. «В этом волшебство управления самосборкой с помощью химии».
«Благодаря химии, мы сделали крошечные изменения одной химической связи на каждые 100 атомов, и увеличили проводимость наноленты в 20 раз. И это важно с практической точки зрения, чтобы получить таким путем хороший металл, — сказал Кромми.
«Я верю, что эта технология в будущем произведет революцию в том, как мы строим интегральные схемы», — сказал Фишер. «Это будет большим шагом вперед в разработке и производстве электроники по сравнению с теми результатами, которые можно ожидать от кремния прямо сейчас. Теперь у нас есть возможность получить более высокую скорость работы при гораздо меньшем энергопотреблении. Это будет движущей силой в будущем индустрии электронных полупроводников».
===========
Источник:
habr.com
===========
===========
Автор оригинала: Robert Sanders
===========Похожие новости:
- [DIY или Сделай сам, Звук, Периферия, Производство и разработка электроники] Хорошо забытое новое: Falcon Acoustics возрождает DIY-акустику и продаёт колонки-конструктор за 150 000 рублей
- [Производство и разработка электроники, Электроника для начинающих] Подготовка радиоэлементов к пайке
- [Производство и разработка электроники, Научно-популярное, Физика] Сверхскоростная съемка: 15 триллионов кадров в секунду
- [Химия, Биотехнологии, Научно-популярное] Нано-нитрид бора VS антибиотик?
- [Гаджеты, Производство и разработка электроники, Процессоры, Смартфоны] Apple загрузила заказами на iPhone 12 все линии TSMC на 5 нм
- [Схемотехника, Электроника для начинающих, Производство и разработка электроники, Энергия и элементы питания] Электробезопасность оптических изоляторов в условиях возможных отказов (перевод)
- [Беспроводные технологии, Программирование микроконтроллеров, Разработка для интернета вещей, Производство и разработка электроники, Интернет вещей] ИК датчик движения на STM32
- [Законодательство в IT, Компьютерное железо, Производство и разработка электроники, Хранение данных] Российская СХД на отечественных процессорах «Эльбрус»: все, что вы хотели, но боялись спросить
- [Научно-популярное, Биотехнологии, Нанотехнологии, Квантовые технологии] Квантовый нанотермометр: измерение температуры нематоды длиной 1 мм
- [Управление разработкой, Разработка для интернета вещей, Производство и разработка электроники, Дизайн, Электроника для начинающих] Кухня промдизайна #1: почти идеальная разработка корпуса модуля IRRIOT
Теги для поиска: #_proizvodstvo_i_razrabotka_elektroniki (Производство и разработка электроники), #_himija (Химия), #_nanotehnologii (нанотехнологии), #_proizvodstvo_i_razrabotka_elektroniki (
Производство и разработка электроники
), #_himija (
Химия
)
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 08:20
Часовой пояс: UTC + 5
Автор | Сообщение |
---|---|
news_bot ®
Стаж: 6 лет 9 месяцев |
|
Изображение широкополосной металлической графеновой наноленты (Graphene Nanoribbon, GNR) шириной в 1,6 нанометра, сделанное с помощью сканирующего туннельного микроскопа. Транзисторы, основанные на углероде, а не на кремние, потенциально могут повысить скорость компьютеров и снизить их энергопотребление более чем в тысячу раз — подумайте, например, о мобильном телефоне, который держит заряд в течение нескольких месяцев. Но набор необходимых материалов, необходимых для создания работающих углеродных цепей, оставался неполным до настоящего момента. Группа химиков и физиков из Калифорнийского университета в Беркли, наконец, создала последний недостающий элемент — металлическую проволоку, полностью сделанную из углерода. Это в свою очередь, подготовило почву для начала исследований по созданию транзисторов на основе углерода, и в конечном итоге — компьютеров. Феликс Фишер, профессор химии Калифорнийского университета в Беркли, отметил, что возможность изготавливать все элементы интегральной схемы из одного материала сделает производство легче: «Это был один из ключевых моментов, которого не хватало в общей картине архитектуры интегральных схем, полностью основанных на углероде». Металлические провода используются для соединения транзисторов в компьютерной микросхеме — переносят электричество от устройства к устройству и соединяют полупроводниковые элементы внутри блока микросхем. Группа Калифорнийского университета в Беркли в течение нескольких лет работала над тем, как сделать полупроводники и изоляторы из графеновых нанолент, которые представляют собой узкие одномерные полоски графена толщиной в атом. Структура этих нанолент, полностью состоит из атомов углерода, расположенных в гексагональной сингонии, напоминающем проволочную сетку. В то время как другие материалы на основе углерода, такие как листы двумерного графена и углеродные нанотрубки могут быть металлическими, у них есть свои недостатки. Например, преобразование листа двумерного графена в полосы нанометрового размера может превратить их в полупроводники или даже изоляторы. Углеродные нанотрубки, которые являются отличными проводниками, не могут быть получены с такой же точностью в больших количествах, как наноленты. «Наноленты позволяют нам получать доступ к широкому спектру структур, используя восходящее проектирование, что еще невозможно с нанотрубками», — сказал Майкл Кромми, профессор физики Университета Беркли. «Это позволило нам соединить электроны вместе, чтобы создать металлическую наноленту, чего раньше не делали. Это одна из серьезных задач в области технологии графеновых нанолент, и поэтому мы так взволнованы этим». Наноленты из металлического графена имеют широкую, частично заполненную электронную полосу, характерную для металлов, и могут быть сравнимы по проводимости с двумерным графеном. «Это первый случай, когда мы можем создать ультратонкий металлический проводник из материалов на основе углерода и это настоящий прорыв», — добавил Фишер. Кромми, Фишер и их коллеги из Калифорнийского университета в Беркли и Национальной лаборатории Лоуренса Беркли (Berkeley Lab) опубликовали свои выводы в выпуске журнала Science за 25 сентября. Интегральные схемы на основе кремния использовались в компьютерах в течение десятилетий, регулярно увеличивающейся скоростью работы и производительностью в соответствии с законом Мура, но они уже достигают своего предела скорости насколько быстро они могут переключаться между «нулями» и «единицами». Также становится все труднее снизить энергопотребление; компьютеры уже потребляют значительную часть мирового производства энергии. По словам Фишера, компьютеры на основе углерода потенциально могут переключаться во много раз быстрее, чем кремниевые компьютеры, и потреблять лишь долю от их энергии. Графен, представляющий собой чистый углерод, являлся ведущим претендентом на создание компьютеров следующего поколения на основе углерода. Однако узкие полоски графена в первую очередь являются полупроводниками, и проблема заключалась в том, чтобы заставить их также работать как изоляторы и металлы, чтобы построить транзисторы на основе углерода. Несколько лет назад Фишер и Кромми объединились с ученым-теоретиком материаловедом Стивеном Луи, профессором физики Калифорнийского университета в Беркли, чтобы открыть новые способы соединения небольших отрезков наноленты с сохранением всех проводящих свойств. Два года назад команда продемонстрировала, что, правильно соединив короткие сегменты наноленты, электроны в каждом сегменте могут быть расположены так, чтобы создать новое топологическое состояние — особую квантовую волновую функцию — что приводит к настраиваемым свойствам полупроводника. В новой работе они используют аналогичную технику для «сшивания» коротких сегментов нанолент, чтобы создать проводящий металлический провод длиной в десятки нанометров и шириной всего лишь в один нанометр. «Все они спроектированы так, что могут сочетаться друг с другом лишь одним способом. Это как если бы вы взяли пакет с Lego, встряхнули его, и получили полностью собранный автомобиль », — сказал он. «В этом волшебство управления самосборкой с помощью химии». «Благодаря химии, мы сделали крошечные изменения одной химической связи на каждые 100 атомов, и увеличили проводимость наноленты в 20 раз. И это важно с практической точки зрения, чтобы получить таким путем хороший металл, — сказал Кромми. «Я верю, что эта технология в будущем произведет революцию в том, как мы строим интегральные схемы», — сказал Фишер. «Это будет большим шагом вперед в разработке и производстве электроники по сравнению с теми результатами, которые можно ожидать от кремния прямо сейчас. Теперь у нас есть возможность получить более высокую скорость работы при гораздо меньшем энергопотреблении. Это будет движущей силой в будущем индустрии электронных полупроводников». =========== Источник: habr.com =========== =========== Автор оригинала: Robert Sanders ===========Похожие новости:
Производство и разработка электроники ), #_himija ( Химия ) |
|
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 08:20
Часовой пояс: UTC + 5