[Python, Data Mining, Natural Language Processing] Обзор методов создания эмбедингов предложений, Часть2

Автор Сообщение
news_bot ®

Стаж: 6 лет 4 месяца
Сообщений: 27286

Создавать темы news_bot ® написал(а)
14-Авг-2020 00:30

Здравствуйте, продолжение статьи про методы создания эмбедингов предложений. В этом гайде мало слов и много кода, готово для Ctrl+с, Ctrl+v для удучшений и дальнейших тестов.
Часть1 обязательна для ознакомления
4. BERT
from deeppavlov.core.common.file import read_json
from deeppavlov import build_model, configs
from deeppavlov.models.embedders.elmo_embedder import ELMoEmbedder
# ссылка для скачивания моделей http://docs.deeppavlov.ai/en/master/features/pretrained_vectors.html

4.1 rubert_cased_L-12_H-768_A-12_pt
class RU_BERT_CLASS:
    def __init__(self, name):
        bert_config = read_json(configs.embedder.bert_embedder)
        bert_config['metadata']['variables']['BERT_PATH'] = os.path.join('./.', name)
        self.m = build_model(bert_config)
    def vectorizer(self, sentences):
        return [sentence.split() for sentence in sentences]
    def predict(self, tokens):
        _, _, _, _, sent_max_embs, sent_mean_embs, _ = self.m(tokens)
        return sent_mean_embs
bert = RU_BERT_CLASS('rubert_cased_L-12_H-768_A-12_pt')
get_similarity_values = similarity_values_wrapper(bert.predict, bert.vectorizer, distance_function=cosine_distances)
evaluate(get_similarity_values, 'rubert')

'rubert: 2895.7'
4.2 ru_conversational_cased_L-12_H-768_A-12_pt
bert = RU_BERT_CLASS('ru_conversational_cased_L-12_H-768_A-12_pt')
get_similarity_values = similarity_values_wrapper(bert.predict, bert.vectorizer, distance_function=cosine_distances)
evaluate(get_similarity_values, 'ru_conversational')

'ru_conversational: 3559.1'
4.3 sentence_ru_cased_L-12_H-768_A-12_pt
bert = RU_BERT_CLASS('sentence_ru_cased_L-12_H-768_A-12_pt')
get_similarity_values = similarity_values_wrapper(bert.predict, bert.vectorizer, distance_function=cosine_distances)
evaluate(get_similarity_values, 'sentence_ru')

'sentence_ru: 2660.2'
4.4 elmo_ru-news_wmt11-16_1.5M_steps
class ELMO_CLASS(RU_BERT_CLASS):
    def __init__(self, name):
        self.m = ELMoEmbedder(f"http://files.deeppavlov.ai/deeppavlov_data/{name}")
    def predict(self, tokens):
        return self.m(tokens)

elmo = ELMO_CLASS('elmo_ru-news_wmt11-16_1.5M_steps.tar.gz')
get_similarity_values = similarity_values_wrapper(elmo.predict, elmo.vectorizer, distance_function=cosine_distances)
evaluate(get_similarity_values, 'elmo_ru-news')

'elmo_ru-news: 4631.3'
4.5 elmo_ru-wiki_600k_steps
elmo = ELMO_CLASS('elmo_ru-wiki_600k_steps.tar.gz')
get_similarity_values = similarity_values_wrapper(elmo.predict, elmo.vectorizer, distance_function=cosine_distances)
evaluate(get_similarity_values, 'elmo_ru-wiki')

'elmo_ru-wiki: 4507.6'
4.6 elmo_ru-twitter_2013-01_2018-04_600k_steps
elmo = ELMO_CLASS('elmo_ru-twitter_2013-01_2018-04_600k_steps.tar.gz')
get_similarity_values = similarity_values_wrapper(elmo.predict, elmo.vectorizer, distance_function=cosine_distances)
evaluate(get_similarity_values, 'elmo_ru-twitter')

'elmo_ru-twitter: 2962.2'
plot_results()


5. Автоэнкодеры
Автоэнкодеры созданы для сжатия многомерного ветора до одномерного и, теоретически, должны идеально подойти для создания эмбедингов предложения.
5.1 Автоэнкодер embedings -> embedings
def models_builder(data_generator):
    def cosine_loss(y_true, y_pred):
        return K.mean(cosine_similarity(y_true, y_pred, axis=-1))
    complexity = 300
    inp = Input(shape=(data_generator.max_len, data_generator.embedding_size))
    X = inp
    X = Bidirectional(LSTM(complexity, return_sequences=True))(X)
    X = Bidirectional(LSTM(int(complexity/10), return_sequences=True))(X)
    X = Flatten()(X)
    X = Dense(complexity, activation='elu')(X)
    X = Dense(complexity, activation='elu')(X)
    X = Dense(complexity, activation='linear', name='embeding_output')(X)
    X = Dense(complexity, activation='elu')(X)
    X = Dense(data_generator.max_len*complexity, activation='elu')(X)
    X = Reshape((data_generator.max_len, complexity))(X)
    X = Bidirectional(LSTM(complexity, return_sequences=True))(X)
    X = Bidirectional(LSTM(complexity, return_sequences=True))(X)
    X = Dense(data_generator.embedding_size, activation='elu')(X)
    autoencoder = Model(inputs=inp, outputs=X)
    autoencoder.compile(loss=cosine_loss, optimizer='adam')
    autoencoder.summary()
    embedder = Model(inputs=inp, outputs=autoencoder.get_layer('embeding_output').output)
    return autoencoder, embedder
data_generator = EmbedingsDataGenerator(use_fasttext=False)
autoencoder, embedder = models_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize, distance_function=cosine_distances)

new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'автоэнкодер embedings -> embedings')
        new_result = parse_result(new_result)
        print(i, new_result)
        if new_result < previous_result and i > 20:
            break
    for x, y in data_generator:
        autoencoder.train_on_batch(x, x)

0 1770.2
3 212.6
6 138.8
9 84.8
12 78.1
15 106.4
18 112.7
21 79.7
5.2 Автоэнкодер embedings -> indexes
def models_builder(data_generator):
    complexity = 300
    inp = Input(shape=(data_generator.max_len, data_generator.embedding_size))
    X = inp
    X = Bidirectional(LSTM(complexity, return_sequences=True))(X)
    X = Bidirectional(LSTM(int(complexity/10), return_sequences=True))(X)
    X = Flatten()(X)
    X = Dense(complexity, activation='elu')(X)
    X = Dense(complexity, activation='elu')(X)
    X = Dense(complexity, activation='linear', name='embeding_output')(X)
    X = Dense(complexity, activation='elu')(X)
    X = Dense(data_generator.max_len*complexity, activation='elu')(X)
    X = Reshape((data_generator.max_len, complexity))(X)
    X = Bidirectional(LSTM(complexity, return_sequences=True))(X)
    X = Bidirectional(LSTM(complexity, return_sequences=True))(X)
    X = Dense(len(data_generator.token2index), activation='softmax')(X)
    autoencoder = Model(inputs=inp, outputs=X)
    autoencoder.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
    autoencoder.summary()
    embedder = Model(inputs=inp, outputs=autoencoder.get_layer('embeding_output').output)
    return autoencoder, embedder
data_generator = IndexesDataGenerator()
autoencoder, embedder = models_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'автоэнкодер embedings -> indexes')
        new_result = parse_result(new_result)
        print(i, new_result)
        if new_result < previous_result and i > 20:
            break
    for x_e, x_i, y_i in data_generator:
        autoencoder.train_on_batch(x_e, x_i)

0 1352.9
3 43.6
6 41.7
9 8.1
12 -5.6
15 43.1
18 36.1
21 -3.7
5.3 Автоэнкодер архитектура LSTM -> LSTM
def models_builder(data_generator):
    def cosine_loss(y_true, y_pred):
        return K.mean(cosine_similarity(y_true, y_pred, axis=-1))
    complexity = 300
    inp = Input(shape=(data_generator.max_len, data_generator.embedding_size))
    X = inp
    X, state_h, state_c = LSTM(complexity, return_state=True)(X)
    X = Concatenate()([state_h, state_c])
    X = Dense(complexity, activation='linear', name='embeding_output')(X)
    state_c = Dense(complexity, activation='linear')(X)
    state_h = Dense(complexity, activation='linear')(X)
    inp_zeros = Input(shape=(data_generator.max_len, data_generator.embedding_size))
    X = LSTM(complexity, return_sequences=True)(inp_zeros, [state_c, state_h])
    X = Dense(data_generator.embedding_size, activation='linear')(X)
    autoencoder = Model(inputs=[inp, inp_zeros], outputs=X)
    autoencoder.compile(loss=cosine_loss, optimizer='adam')
    autoencoder.summary()
    embedder = Model(inputs=inp, outputs=autoencoder.get_layer('embeding_output').output)
    return autoencoder, embedder
data_generator = EmbedingsDataGenerator(use_fasttext=False)
autoencoder, embedder = models_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

zeros = np.zeros((data_generator.batch_size, data_generator.max_len, data_generator.embedding_size))
new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'автоэнкодер embedings -> indexes')
        new_result = parse_result(new_result)
        print(i, new_result)
        if new_result < previous_result and i > 20:
            break
    for x, y in data_generator:
        autoencoder.train_on_batch([x, zeros], x)

0 1903.6
3 1299.3
6 313.5
9 445.3
12 454.9
15 447.7
18 454.5
21 448.1
5.4 Автоэнкодер архитектура LSTM -> LSTM -> indexes
def models_builder(data_generator):
    complexity = 300
    inp = Input(shape=(data_generator.max_len, data_generator.embedding_size))
    X = inp
    X, state_h, state_c = LSTM(complexity, return_state=True)(X)
    X = Concatenate()([state_h, state_c])
    X = Dense(complexity, activation='linear', name='embeding_output')(X)
    state_c = Dense(complexity, activation='linear')(X)
    state_h = Dense(complexity, activation='linear')(X)
    inp_zeros = Input(shape=(data_generator.max_len, data_generator.embedding_size))
    X = LSTM(complexity, return_sequences=True)(inp_zeros, [state_c, state_h])
    X = Dense(len(data_generator.token2index), activation='softmax')(X)
    autoencoder = Model(inputs=[inp, inp_zeros], outputs=X)
    autoencoder.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
    autoencoder.summary()
    embedder = Model(inputs=inp, outputs=autoencoder.get_layer('embeding_output').output)
    return autoencoder, embedder
data_generator = IndexesDataGenerator()
autoencoder, embedder = models_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

zeros = np.zeros((data_generator.batch_size, data_generator.max_len, data_generator.embedding_size))
new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'автоэнкодер архитектура LSTM -> LSTM -> indexes')
        new_result = parse_result(new_result)
        print(i, new_result)
        if new_result < previous_result and i > 20:
            break
    for x_e, x_i, y_i in data_generator:
        autoencoder.train_on_batch([x_e, zeros], x_i)

0 1903.6
3 1483.3
6 1249.3
9 566.3
12 789.2
15 702.3
18 480.5
21 552.3
24 533.0
Методы с учителем
6. Эмбединги на Transfer Learning
TEXTS_CORPUS_WITH_LABEL = [(sentence, topic) for topic in texts_for_training for sentence in texts_for_training[topic]]
class BowDataGenerator(EmbedingsDataGenerator):
    def __init__(self, texts_topics=TEXTS_CORPUS_WITH_LABEL, batch_size=128, batches_per_epoch=100):
        self.texts_topics = texts_topics
        self.topic2index = {topic: index for index, topic in enumerate({topic for text, topic in self.texts_topics})}
        self.batch_size = batch_size
        self.batches_per_epoch = batches_per_epoch
        self.count_vectorizer = CountVectorizer().fit([text_topic[0] for text_topic in self.texts_topics])
        counts = Counter([text_topic[1] for text_topic in self.texts_topics])
        self.class_weight = {self.topic2index[intent_id]:1/counts[intent_id] for intent_id in counts}
    def vectorize(self, sentences):
        return self.count_vectorizer.transform(sentences).toarray()
    def __iter__(self):
        for _ in tqdm(range(self.batches_per_epoch), leave=False):
            X_batch = []
            y_batch = []
            finished_batch = False
            while not finished_batch:
                text, topic = random.choice(self.texts_topics)
                X_batch.append(text)
                y_batch.append(self.topic2index[topic])
                if len(X_batch) >= self.batch_size:
                    X_batch = self.count_vectorizer.transform(X_batch).toarray()
                    y_batch = to_categorical(y_batch, num_classes=len(self.topic2index))
                    yield np.array(X_batch), np.array(y_batch)
                    finished_batch = True
data_generator = BowDataGenerator()

6.1 Эмбединги на основе BOW
def models_builder(data_generator):
    complexity = 500
    inp = Input(shape=(len(data_generator.count_vectorizer.get_feature_names()),))
    X = inp
    X = Dense(complexity)(X)
    X = Activation('elu')(X)
    X = Dense(complexity)(X)
    X = Activation('elu')(X)
    X = Dense(complexity, name='embeding_output')(X)
    X = Activation('elu')(X)
    X = Dense(len(data_generator.topic2index), activation='softmax')(X)
    model = Model(inputs=inp, outputs=X)
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
    model.summary()
    embedder = Model(inputs=inp, outputs=model.get_layer('embeding_output').output)
    return model, embedder
data_generator = BowDataGenerator()
model, embedder = models_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'ембединг на BOW')
        new_result = parse_result(new_result)
        print(i, new_result)
        if new_result < previous_result and i > 20:
            break
    for x, y in data_generator:
        model.train_on_batch(x, y, class_weight=data_generator.class_weight)

0 601.4
3 1175.4
6 1187.0
9 1175.9
12 1097.9
15 1083.4
18 1083.8
21 1060.5
6.2 Эмбединг на LSTM + MaxPooling (InferSent)
Сыылки на стать:
Arxiv с теорией
Объяснено по-человечески
class LabelsDataGenerator(EmbedingsDataGenerator):
    def __init__(self, texts_topics=TEXTS_CORPUS_WITH_LABEL, target_len=20, batch_size=128, batches_per_epoch=100, use_word2vec=True, use_fasttext=True):
        self.texts_topics = texts_topics
        self.topic2index = {topic: index for index, topic in enumerate({topic for text, topic in self.texts_topics})}
        self.target_len = target_len
        self.batch_size = batch_size
        self.batches_per_epoch = batches_per_epoch
        self.use_word2vec = use_word2vec
        self.use_fasttext = use_fasttext
        self.embedding_size = len(vectorize('token', use_word2vec=self.use_word2vec, use_fasttext=self.use_fasttext))
        counts = Counter([text_topic[1] for text_topic in self.texts_topics])
        self.class_weight = {self.topic2index[intent_id]:1/counts[intent_id] for intent_id in counts}
    def vectorize(self, sentences):
        vectorized = []
        for text in sentences:
            tokens = str(text).split()
            x_vec = []
            for token in tokens:
                token_vec = vectorize(token, use_word2vec=self.use_word2vec, use_fasttext=self.use_fasttext)
                x_vec.append(token_vec)
            vectorized.append(x_vec)
        vectorized = pad_sequences(vectorized, maxlen=self.target_len)
        return vectorized
    def __iter__(self):
        for _ in tqdm(range(self.batches_per_epoch), leave=False):
            X_batch = []
            y_batch = []
            finished_batch = False
            while not finished_batch:
                text, topic = random.choice(self.texts_topics)
                tokens = text.split()
                x_vec = []
                for token in tokens:
                    token_vec = vectorize(token, use_word2vec=self.use_word2vec, use_fasttext=self.use_fasttext)
                    if len(x_vec) >= self.target_len:
                        X_batch.append(x_vec)
                        y_batch.append(self.topic2index[topic])
                        if len(X_batch) >= self.batch_size:
                            break
                    x_vec.append(token_vec)
                else:
                    X_batch.append(x_vec)
                    y_batch.append(self.topic2index[topic])
                if len(X_batch) >= self.batch_size:
                    X_batch = pad_sequences(X_batch, maxlen=self.target_len)
                    y_batch = to_categorical(y_batch, num_classes=len(self.topic2index))
                    yield np.array(X_batch), np.array(y_batch)
                    finished_batch = True

def models_builder(data_generator):
    complexity = 768
    inp = Input(shape=(data_generator.target_len, data_generator.embedding_size))
    X = inp
    X = Bidirectional(LSTM(complexity, return_sequences=True))(X)
    X = Permute((2,1))(X)
    X = MaxPooling1D(pool_size=600)(X)
    X = Flatten()(X)
    X = Dense(complexity)(X)
    X = Activation('elu')(X)
    X = Dense(complexity, name='embeding_output')(X)
    X = Activation('sigmoid')(X)
    X = Dense(len(data_generator.topic2index), activation='softmax')(X)
    model = Model(inputs=inp, outputs=X)
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
    model.summary()
    embedder = Model(inputs=inp, outputs=model.get_layer('embeding_output').output)
    return model, embedder
data_generator = LabelsDataGenerator()
model, embedder = models_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'эмбединг на LSTM + MaxPooling')
        new_result = parse_result(new_result)
        print(i, new_result)
        if new_result < previous_result and i > 20:
            break
    for x, y in data_generator:
        model.train_on_batch(x, y, class_weight=data_generator.class_weight)

0 87.0
3 152.1
6 110.5
9 146.7
12 166.2
15 79.8
18 47.2
21 84.0
24 144.8
27 83.8
6.3 Эмбединг на LSTM + Conv1D + AveragePooling
def models_builder(data_generator):
    complexity = 600
    inp = Input(shape=(data_generator.target_len, data_generator.embedding_size))
    X_R = inp
    X_R = Bidirectional(LSTM(complexity, return_sequences=True))(X_R)
    X_R = Bidirectional(LSTM(complexity, return_sequences=True))(X_R)
    X_C = inp
    X_C = Conv1D(complexity, 3, strides=1, padding='same')(X_C)
    X_C = Conv1D(complexity, 3, strides=1, padding='same')(X_C)
    X = Concatenate()([X_R, X_C])
    X = AveragePooling1D(pool_size=2)(X)
    X = Conv1D(complexity, 3, strides=1, padding='same')(X)
    X = AveragePooling1D(pool_size=2)(X)
    X = Conv1D(complexity, 3, strides=1, padding='same')(X)
    X = AveragePooling1D(pool_size=2)(X)
    X = Flatten()(X)
    X = Dense(complexity)(X)
    X = Activation('sigmoid')(X)
    X = Dense(complexity, name = 'embeding_output')(X)
    X = Activation('elu')(X)
    X = Dense(len(data_generator.topic2index), activation='softmax')(X)
    model = Model(inputs=inp, outputs=X)
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
    model.summary()
    embedder = Model(inputs=inp, outputs=model.get_layer('embeding_output').output)
    return model, embedder
data_generator = LabelsDataGenerator()
model, embedder = models_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

0 353.8
3 -147.8
6 7.6
9 5.5
12 -133.6
15 -133.6
18 9.0
21 9.0
24 -133.6
6.4 Эмбединг на LSTM + Inception + Attention
def models_builder(data_generator):
    rate = 0.20
    complexity = 500
    def inception_convolutional_layer(X, complexity, rate=0.2, regularizer=0):
        X_7 = Conv1D(int(complexity/7), kernel_size=7, strides=1, padding='same')(X)
        X_6 = Conv1D(int(complexity/6), kernel_size=6, strides=1, padding='same')(X)
        X_5 = Conv1D(int(complexity/5), kernel_size=5, strides=1, padding='same')(X)
        X_4 = Conv1D(int(complexity/4), kernel_size=4, strides=1, padding='same')(X)
        X_3 = Conv1D(int(complexity/3), kernel_size=3, strides=1, padding='same')(X)
        X_2 = Conv1D(int(complexity/2), kernel_size=2, strides=1, padding='same')(X)
        X_1 = Conv1D(int(complexity/1), kernel_size=1, strides=1, padding='same')(X)
        X = Concatenate()([X_7, X_6, X_5, X_4, X_3, X_2, X_1])
        X = Activation('elu')(X)
        X = BatchNormalization()(X)
        X = Dropout(rate)(X)
        return X
    def bi_LSTM(X, complexity, rate=0.2, regularizer=0):
        X = Bidirectional(LSTM(int(complexity/2), return_sequences=True))(X)
        X = BatchNormalization()(X)
        X = Dropout(rate)(X)
        return X
    def dense_layer(X, complexity, activation='elu', rate=0.2, regularizer=0, name=None):
        X = Dense(int(complexity), name=name)(X)
        X = Activation(activation)(X)
        X = BatchNormalization()(X)
        X = Dropout(rate)(X)
        return X
    inp = Input(shape=(data_generator.target_len, data_generator.embedding_size))
    X = inp
    X = inception_convolutional_layer(X, complexity)
    X = inception_convolutional_layer(X, complexity)
    X = inception_convolutional_layer(X, complexity)
    X = MaxPooling1D(pool_size=2)(X)
    X = inception_convolutional_layer(X, complexity)
    X = MaxPooling1D(pool_size=2)(X)
    X = inception_convolutional_layer(X, complexity)
    X = MaxPooling1D(pool_size=2)(X)
    R = inp
    R = bi_LSTM(R, complexity)
    R = bi_LSTM(R, complexity/2)
    attention_probs = Dense(int(complexity/2), activation='sigmoid', name='attention_probs')(R)
    R = multiply([R, attention_probs], name='attention_mul')
    R = Dropout(rate)(R)
    R = MaxPooling1D(pool_size=2)(R)
    R = inception_convolutional_layer(R, complexity)
    R = MaxPooling1D(pool_size=2)(R)
    R = inception_convolutional_layer(R, complexity)
    R = MaxPooling1D(pool_size=2)(R)
    X = Concatenate(axis=-1)([X, R])
    X = Flatten()(X)
    X = BatchNormalization()(X)
    X = Dropout(rate)(X)
    X = dense_layer(X, complexity)
    X = dense_layer(X, complexity, activation='sigmoid')
    X = dense_layer(X, complexity, name='embeding_output')
    X = Dense(len(data_generator.topic2index), activation='softmax')(X)
    model = Model(inputs=inp, outputs=X)
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
    model.summary()
    embedder = Model(inputs=inp, outputs=model.get_layer('embeding_output').output)
    return model, embedder
data_generator = LabelsDataGenerator()
model, embedder = models_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'эмбединг на LSTM + Inception + Attention')
        new_result = parse_result(new_result)
        print(i, new_result)
        if new_result < previous_result and i > 20:
            break
    for x, y in data_generator:
        model.train_on_batch(x, y, class_weight=data_generator.class_weight)

0 275.0
3 126.8
6 173.9
9 155.5
12 168.4
15 287.2
18 382.8
21 303.4
plot_results()


7 Triplet loss
Обучение будет происходит на том, что мы векторы из одного интента должны распологаться ближе друг к другу, а из разных интентов, дальше. Тем самым предложения, иемющие похожий смысл будут стоять ближ друг к другу, а разный, будут отстоять друг от друга.
Подробнее про Triplet loss вот тут
7.1 Triplet loss на BOW
class TripletDataGeneratorIndexes(BowDataGenerator):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.database = {}
        for text, topic in self.texts_topics:
            if topic not in self.database:
                self.database[topic] = []
            self.database[topic].append(text)
        # почистим все интенты с <5 сообщениями
        sh_database = {}
        for topic in self.database:
            if len(self.database[topic]) > 5:
                sh_database[topic] = self.database[topic]
        self.database = sh_database
        self.all_topics = [topic for topic in self.database]
    def __iter__(self):
        for _ in tqdm(range(self.batches_per_epoch), leave=False):
            anchor = []
            positive = []
            negative = []
            for _ in range(self.batch_size):
                anchor_topic = random.choice(self.all_topics)
                anchor_index = np.random.randint(len(self.database[anchor_topic]))
                positive_index = np.random.randint(len(self.database[anchor_topic]))
                while positive_index == anchor_index:
                    positive_index = np.random.randint(len(self.database[anchor_topic]))
                negative_topic = random.choice(self.all_topics)
                while negative_topic == anchor_topic:
                    negative_topic = random.choice(self.all_topics)
                negative_index = np.random.randint(len(self.database[negative_topic]))
                anchor.append(self.database[anchor_topic][anchor_index])
                positive.append(self.database[anchor_topic][positive_index])
                negative.append(self.database[negative_topic][negative_index])
            yield self.vectorize(anchor), self.vectorize(positive), self.vectorize(negative)

def models_builder(data_generator):
    sentence_embeding_size = 100
    def lossless_triplet_loss(y_true, y_pred, N=sentence_embeding_size, beta=100, epsilon=1e-8):
        """
        Implementation of the triplet loss function
        Arguments:
        y_true -- true labels, required when you define a loss in Keras, you don't need it in this function.
        y_pred -- python list containing three objects:
                anchor -- the encodings for the anchor data
                positive -- the encodings for the positive data (similar to anchor)
                negative -- the encodings for the negative data (different from anchor)
        N  --  The number of dimension
        beta -- The scaling factor, N is recommended
        epsilon -- The Epsilon value to prevent ln(0)
        Returns:
        loss -- real number, value of the loss
        """
        anchor = tf.convert_to_tensor(y_pred[:,0:N])
        positive = tf.convert_to_tensor(y_pred[:,N:N*2])
        negative = tf.convert_to_tensor(y_pred[:,N*2:N*3])
        # distance between the anchor and the positive
        pos_dist = tf.reduce_sum(tf.square(tf.subtract(anchor,positive)),1)
        # distance between the anchor and the negative
        neg_dist = tf.reduce_sum(tf.square(tf.subtract(anchor,negative)),1)
        #Non Linear Values
        pos_dist = -tf.math.log(-tf.math.divide((pos_dist),beta)+1+epsilon)
        neg_dist = -tf.math.log(-tf.math.divide((N-neg_dist),beta)+1+epsilon)
        # compute loss
        loss = neg_dist + pos_dist
        return loss
    def basic_sentence_vectorizer():
        inp = Input(shape=(len(data_generator.count_vectorizer.get_feature_names()),))
        X = inp
        X = Dense(complexity)(X)
        X = Activation('elu')(X)
        X = Dense(complexity)(X)
        X = Activation('elu')(X)
        X = Dense(complexity, name='embeding_output')(X)
        X = Activation('elu')(X)
        X = Dense(complexity)(X)
        vectorizer = Model(inputs=inp, outputs=X)
        return vectorizer
    complexity = 300
    inp_anchor = Input(shape=(len(data_generator.count_vectorizer.get_feature_names()),))
    inp_positive = Input(shape=(len(data_generator.count_vectorizer.get_feature_names()),))
    inp_negative = Input(shape=(len(data_generator.count_vectorizer.get_feature_names()),))
    embedder = basic_sentence_vectorizer()
    anchor = embedder(inp_anchor)
    positive = embedder(inp_positive)
    negative = embedder(inp_negative)
    output = Concatenate(axis=1)([anchor, positive, negative])
    model = Model(inputs=[inp_anchor, inp_positive, inp_negative], outputs=output)
    model.compile(optimizer='adagrad', loss=lossless_triplet_loss)
    model.summary()
    return model, embedder
data_generator = TripletDataGeneratorIndexes(batch_size=128, batches_per_epoch=10000)
model, embedder = models_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

zeros = np.zeros((data_generator.batch_size, 1, 1))
new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'triplet loss indexes')
        new_result = parse_result(new_result)
        print(i, new_result)
        if new_result < previous_result and i > 20:
            break
    for a, p, n in data_generator:
        model.train_on_batch([a, p, n], zeros)

0 724.1
3 -143.5
6 11.7
9 36.2
12 -123.5
15 150.1
18 -51.9
21 5.0
24 -43.5
7.2 Triplet loss на embedings
class TripletDataGeneratorEmbedings(TripletDataGeneratorIndexes):
    def __init__(self, *args, **kwargs):
        super().__init__()
        self.target_len = kwargs['target_len']
        self.embedding_size = len(vectorize('any_token'))
        self.use_word2vec = True
        self.use_fasttext = True
        self.batches_per_epoch = kwargs['batches_per_epoch']
    def vectorize(self, sentences):
        return LabelsDataGenerator.vectorize(self, sentences)

def models_builder(data_generator):
    sentence_embeding_size = 300
    def lossless_triplet_loss(y_true, y_pred, N=sentence_embeding_size, beta=100, epsilon=1e-8):
        """
        Implementation of the triplet loss function
        Arguments:
        y_true -- true labels, required when you define a loss in Keras, you don't need it in this function.
        y_pred -- python list containing three objects:
                anchor -- the encodings for the anchor data
                positive -- the encodings for the positive data (similar to anchor)
                negative -- the encodings for the negative data (different from anchor)
        N  --  The number of dimension
        beta -- The scaling factor, N is recommended
        epsilon -- The Epsilon value to prevent ln(0)
        Returns:
        loss -- real number, value of the loss
        """
        anchor = tf.convert_to_tensor(y_pred[:,0:N])
        positive = tf.convert_to_tensor(y_pred[:,N:N*2])
        negative = tf.convert_to_tensor(y_pred[:,N*2:N*3])
        # distance between the anchor and the positive
        pos_dist = tf.math.reduce_sum(tf.math.square(tf.math.subtract(anchor,positive)),1)
        # distance between the anchor and the negative
        neg_dist = tf.math.reduce_sum(tf.math.square(tf.math.subtract(anchor,negative)),1)
        #Non Linear Values
        pos_dist = -tf.math.log(-tf.math.divide((pos_dist),beta)+1+epsilon)
        neg_dist = -tf.math.log(-tf.math.divide((N-neg_dist),beta)+1+epsilon)
        # compute loss
        loss = neg_dist + pos_dist
        return loss
    def inception_convolutional_layer(X, complexity, rate=0.2, regularizer=0):
        X_7 = Conv1D(int(complexity/7), kernel_size=7, strides=1, padding='same')(X)
        X_6 = Conv1D(int(complexity/6), kernel_size=6, strides=1, padding='same')(X)
        X_5 = Conv1D(int(complexity/5), kernel_size=5, strides=1, padding='same')(X)
        X_4 = Conv1D(int(complexity/4), kernel_size=4, strides=1, padding='same')(X)
        X_3 = Conv1D(int(complexity/3), kernel_size=3, strides=1, padding='same')(X)
        X_2 = Conv1D(int(complexity/2), kernel_size=2, strides=1, padding='same')(X)
        X_1 = Conv1D(int(complexity/1), kernel_size=1, strides=1, padding='same')(X)
        X = Concatenate()([X_7, X_6, X_5, X_4, X_3, X_2, X_1])
        X = Activation('elu')(X)
        X = BatchNormalization()(X)
        X = Dropout(rate)(X)
        return X
    def bi_LSTM(X, complexity, rate=0.2, regularizer=0):
        X = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(int(complexity/2), return_sequences=True))(X)
        X = tf.keras.layers.BatchNormalization()(X)
        X = tf.keras.layers.Dropout(rate)(X)
        return X
    def dense_layer(X, complexity, rate=0.2, regularizer=0):
        X = tf.keras.layers.Dense(int(complexity))(X)
        X = tf.keras.layers.Activation('elu')(X)
        X = tf.keras.layers.BatchNormalization()(X)
        X = tf.keras.layers.Dropout(rate)(X)
        return X
    def basic_sentence_vectorizer():
        rate = 0.20
        complexity = 300
        inp = Input(shape = (data_generator.target_len, data_generator.embedding_size))
        X = inp
        X = inception_convolutional_layer(X, complexity)
        X = inception_convolutional_layer(X, complexity)
        X = inception_convolutional_layer(X, complexity)
        X = tf.keras.layers.MaxPooling1D(pool_size=2)(X)
        X = inception_convolutional_layer(X, complexity)
        X = tf.keras.layers.MaxPooling1D(pool_size=2)(X)
        X = inception_convolutional_layer(X, complexity)
        X = tf.keras.layers.MaxPooling1D(pool_size=2)(X)
        R = inp
        R = bi_LSTM(R, complexity)
        R = bi_LSTM(R, complexity/2)
        attention_probs = tf.keras.layers.Dense(int(complexity/2), activation='sigmoid', name='attention_probs')(R)
        R = multiply([R, attention_probs], name='attention_mul')
        R = Dropout(rate)(R)
        R = MaxPooling1D(pool_size=2)(R)
        R = inception_convolutional_layer(R, complexity)
        R = MaxPooling1D(pool_size=2)(R)
        R = inception_convolutional_layer(R, complexity)
        R = MaxPooling1D(pool_size=2)(R)
        X = Concatenate(axis=-1)([X, R])
        X = Flatten()(X)
        X = BatchNormalization()(X)
        X = Dropout(rate)(X)
        X = dense_layer(X, complexity)
        X = dense_layer(X, complexity)
        X = dense_layer(X, complexity)
        X = Dense(sentence_embeding_size, activation='sigmoid')(X)
        vectorizer = Model(inputs=inp, outputs=X)
        return vectorizer
    inp_anchor = Input(shape = (data_generator.target_len, data_generator.embedding_size))
    inp_positive = Input(shape = (data_generator.target_len, data_generator.embedding_size))
    inp_negative = Input(shape = (data_generator.target_len, data_generator.embedding_size))
    embedder = basic_sentence_vectorizer()
    anchor = embedder(inp_anchor)
    positive = embedder(inp_positive)
    negative = embedder(inp_negative)
    output = Concatenate(axis=1)([anchor, positive, negative])
    model = Model(inputs=[inp_anchor, inp_positive, inp_negative], outputs=output)
    model.compile(optimizer='adagrad', loss=lossless_triplet_loss)
    model.summary()
    return model, embedder
data_generator = TripletDataGeneratorEmbedings(target_len=20, batch_size=32, batches_per_epoch=10000)
model, embedder = models_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

zeros = np.zeros((data_generator.batch_size, 1, 1))
new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'triplet loss embeding')
        new_result = parse_result(new_result)
        print(i, new_result)
        if new_result < previous_result and i>20:
            break
    for a, p, n in data_generator:
        model.train_on_batch([a, p, n], zeros)

0 283.9
3 334.2
6 218.1
9 219.6
12 262.8
15 282.4
18 289.7
21 274.9
plot_results()


Итоги
Можно было предсказать, что победителями будут модели ELMO т.к. они были созданы для векторизации предложений. Их можно смело использовать, когда вам нужно быстро извлечь фичи из текста.
Лично меня приятно удивил BOW и среднее по эмбедингам. Даже без учёта порядка слов, они смогли поставить предложения из одной темы рядом.
Был разочарован автоэнкодерами. Сразу после инициализации результат лучше, чем после обучения. Не могу сказать в чём проблема, скорее всего автоэнкодер не может сжать всё предложение правильно и начинает предсказывать нули. Если у вас будут идеи по улучшению, то жду в комментариях.
Мой личный фаворит Triplet loss на embedings тоже не дал выдающегося результата. Думаю, что он раскроет свой потенциал на моделях в 100 раз больше по размеру и с обучением в течении нескольких месяцев.
Два метода: BOW с леммами без стоп слов и среднее с весами tf-idf хоть и не дают выдающихся средних результатов, но для некоторых предложений дают очень и очень хороший результат. Поэтому, для этих методов, всё должно зависеть от данных.
Вероятно, что со временем будет и Часть 3, если наберу достаточное количество идей.
===========
Источник:
habr.com
===========

Похожие новости: Теги для поиска: #_python, #_data_mining, #_natural_language_processing, #_python, #_nlp_(natural_language_processing), #_embeddings, #_python, #_data_mining, #_natural_language_processing
Профиль  ЛС 
Показать сообщения:     

Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы

Текущее время: 06-Июл 11:02
Часовой пояс: UTC + 5