[Визуализация данных, Высокая производительность, Laravel, Open source, PHP] Профилирование. Отслеживаем состояние боевого окружения с помощью Redis, ClickHouse и Grafana

Автор Сообщение
news_bot ®

Стаж: 6 лет 9 месяцев
Сообщений: 27286

Создавать темы news_bot ® написал(а)
14-Июл-2020 12:32


прим. latency/time.
Наверное перед каждым возникает задача профилирования кода в продакшене. С этой задачей хорошо справляется xhprof от Facebook. Вы профилируете, к примеру, 1/1000 запросов и видите картину на текущий момент. После каждого релиза прибегает продакт и говорит «до релиза было лучше и быстрее». Исторических данных у вас нет и доказать вы ничего не можете. А что если бы могли?
Не так давно, переписывали проблемный участок кода и ожидали сильный прирост производительности. Написали юнит-тесты, провели нагрузочное тестирование, но как код поведет себя под живой нагрузкой? Ведь мы знаем, нагрузочное тестирование не всегда отображает реальные данные, а после деплоя необходимо быстро получить обратную связь от вашего кода. Если вы собираете данные, то, после релиза, вам достаточно 10-15 минут чтобы понять обстановку в боевом окружении.

прим. latency/time. (1) деплой, (2) откат
Стек
Для своей задачи мы взяли колоночную базу данных ClickHouse (сокр. кх). Скорость, линейная масштабируемость, сжатие данных и отсутствие deadlock стали главными причинами такого выбора. Сейчас это одна из основных баз в проекте.
В первой версии мы писали сообщения в очередь, а уже консьюмерами записывали в ClickHouse. Задержка достигала 3-4 часа (да, ClickHouse медленный на вставку по одной записи). Время шло и надо было что-то менять. Реагировать на оповещения с такой задержкой не было смысла. Тогда мы написали крон-команду, которая выбирала из очереди необходимое количество сообщений и отправляла пачку в базу, после, помечала их обработанными в очереди. Первые пару месяцев все было хорошо, пока и тут не начались в проблемы. Событий стало слишком много, начали появляться дубли данных в базе, очереди использовались не по-прямому назначению (стали базой данных), а крон-команда перестала справляться с записью в ClickHouse. За это время в проект добавилось ещё пара десятков таблиц, которые необходимо было писать пачками в кх. Скорость обработки упала. Необходимо было максимально простое и быстрое решение. Это подтолкнуло нас к написанию кода с помощью списков на redis. Идея такая: записываем сообщения в конец списка, крон-командой формируем пачку и отправляем её в очередь. Дальше консьюмеры разбирают очередь и записывают пачку сообщений в кх.
Имеем: ClickHouse, Redis и очередь (любую — rabbitmq, kafka, beanstalkd…)
Redis и списки
До определенного времени, Redis использовался как кэш, но всё меняется. База имеет огромный функционал, а для нашей задачи необходимы всего 3 команды: rpush, lrange и ltrim.
С помощью команды rpush будем записывать данные в конец списка. В крон-команде читать данные с помощью lrange и отправлять в очередь, если нам удалось отправить в очередь, то необходимо удалить выбранные данные с помощью ltrim.
От теории — к практике. Создаем простой список.

У нас есть список из трех сообщений, добавим ещё немного…

Новые сообщения добавляются в конец списка. С помощью команды lrange выбираем пачку (пусть будет =5 сообщений).

Далее пачку отправляем в очередь. Теперь необходимо удалить эту пачку из Redis, чтобы не отправить её повторно.

Алгоритм есть, приступим к реализации.
Реализация
Начнем с таблицы ClickHouse. Не стал сильно заморачиваться и определил всё в тип String.
create table profile_logs
(
    hostname   String, // хост бэкэнда, отправляющего событие
    project    String, // название проекта
    version    String, // версия фреймворка
    userId     Nullable(String),
    sessionId  Nullable(String),
    requestId  String, // уникальная строка для всего запроса от клиента
    requestIp  String, // ip клиента
    eventName  String, // имя события
    target     String, // URL
    latency    Float32, // время выполнения (latency=endTime - beginTime)
    memoryPeak Int32,
    date       Date,
    created    DateTime
)
    engine = MergeTree(date, (date, project, eventName), 8192);

Событие будет таким:
{
  "hostname": "debian-fsn1-2",
  "project": "habr",
  "version": "7.19.1",
  "userId": null,
  "sessionId": "Vv6ahLm0ZMrpOIMCZeJKEU0CTukTGM3bz0XVrM70",
  "requestId": "9c73b19b973ca460",
  "requestIp": "46.229.168.146",
  "eventName": "app:init",
  "target": "/",
  "latency": 0.01384348869323730,
  "memoryPeak": 2097152,
  "date": "2020-07-13",
  "created": "2020-07-13 13:59:02"
}

Структура определена. Чтобы посчитать latency нам нужен временной промежуток. Засекаем с помощью функции microtime:
$beginTime = microtime(true);
// код который необходимо отслеживать
$latency = microtime(true) - $beginTime;

Для упрощения реализации, будем использовать фреймворк laravel и библиотеку laravel-entry. Добавим модель (таблица profile_logs):
class ProfileLog extends \Bavix\Entry\Models\Entry
{
    protected $fillable = [
        'hostname',
        'project',
        'version',
        'userId',
        'sessionId',
        'requestId',
        'requestIp',
        'eventName',
        'target',
        'latency',
        'memoryPeak',
        'date',
        'created',
    ];
    protected $casts = [
        'date' => 'date:Y-m-d',
        'created' => 'datetime:Y-m-d H:i:s',
    ];
}

Напишем метод tick (я сделал сервис ProfileLogService), который будет записывать сообщения в Redis. Получаем текущее время (наш beginTime) и записываем его в переменную $currentTime:
$currentTime = \microtime(true);

Если тик по событию вызван впервые, то записываем его в массив тиков и завершаем метод:
if (empty($this->ticks[$eventName])) {
    $this->ticks[$eventName] = $currentTime;
    return;
}

Если тик вызывается повторно, то мы записываем сообщение в Redis, с помощью метода rpush:
$tickTime = $this->ticks[$eventName];
unset($this->ticks[$eventName]);
Redis::rpush('events:profile_logs', \json_encode([
    'hostname' => \gethostname(),
    'project' => 'habr',
    'version' => \app()->version(),
    'userId' => Auth::id(),
    'sessionId' => \session()->getId(),
    'requestId' => \bin2hex(\random_bytes(8)),
    'requestIp' => \request()->getClientIp(),
    'eventName' => $eventName,
    'target' => \request()->getRequestUri(),
    'latency' => $currentTime - $tickTime,
    'memoryPeak' => \memory_get_usage(true),
    'date' => $tickTime,
    'created' => $tickTime,
]));

Переменая $this->ticks не статическая. Необходимо зарегистрировать сервис как singleton.
$this->app->singleton(ProfileLogService::class);

Размер пачки ($batchSize) можно сконфигурировать, рекомендуется указывать небольшое значние (например, 10,000 элементов). При возникновении проблем (к примеру, не доступен ClickHouse), очередь начнет уходить в failed, и вам необходимо отлаживать данные.
Напишем крон-команду:
$batchSize = 10000;
$key = 'events:profile_logs'
do {
    $bulkData = Redis::lrange($key, 0, \max($batchSize - 1, 0));
    $count = \count($bulkData);
    if ($count) {
        // все данные храним в json, необходимо применить decode
        foreach ($bulkData as $itemKey => $itemValue) {
            $bulkData[$itemKey] = \json_decode($itemValue, true);
        }
        // отправляем в очередь для записи в ch
        \dispatch(new BulkWriter($bulkData));
        // удаляем пачку из redis
        Redis::ltrim($key, $count, -1);
    }
} while ($count >= $batchSize);

Можно сразу записывать данные в ClickHouse, но, проблема кроется в том, что крон работает в однопоточном режиме. Поэтому мы пойдем другим путем — командой сформируем пачки и отправим их в очередь, для последующей многопоточной записи в ClickHouse. Количество консьюмеров можно регулировать — это ускорит отправку сообщений.
Перейдем к написанию консьюмера:
class BulkWriter implements ShouldQueue
{
    use Dispatchable, InteractsWithQueue, Queueable, SerializesModels;
    protected $bulkData;
    public function __construct(array $bulkData)
    {
        $this->bulkData = $bulkData;
    }
    public function handle(): void
    {
            ProfileLog::insert($this->bulkData);
        }
    }
}

Итак, формирование пачек, отправка в очередь и консьюмер разработаны — можно приступать к профилированию:
app(ProfileLogService::class)->tick('post::paginate');
$posts = Post::query()->paginate();
$response = view('posts', \compact('posts'));
app(ProfileLogService::class)->tick('post::paginate');
return $response;

Если все сделано верно, то данные должны находиться в Redis. Запутим крон-команду и отправим пачки в очередь, а уже консьюмер вставит их в базу.

Данные в базе. Можно строить графики.
Grafana
Теперь перейдем к графическому представлению данных, что является ключевым элементом этой статьи. Необходимо установить grafana. Опустим процесс установки для debain-подобных сборок, можно воспользоваться ссылкой на документацию. Обычно, этап установки сводится к apt install grafana.
На ArchLinux установка выглядит следующим образом:
yaourt -S grafana
sudo systemctl start grafana

Сервис запустился. URL: http://localhost:3000
Теперь необходимо установить ClickHouse datasource plugin:
sudo grafana-cli plugins install vertamedia-clickhouse-datasource

Если установили grafana 7+, то ClickHouse работать не будет. Нужно внести изменения в конфигурацию:
sudo vi /etc/grafana.ini

Найдем строку:
;allow_loading_unsigned_plugins =

Заменим её на эту:
allow_loading_unsigned_plugins=vertamedia-clickhouse-datasource

Сохраним и перезапустим сервис:
sudo systemctl restart grafana

Готово. Теперь можем перейти в grafana.
Логин: admin / пароль: admin по умолчанию.

После успешной авторизации, нажмем на шестеренку. В открывшемся popup-окне выберем на Data Sources, добавим соединение с ClickHouse.

Заполняем конфигурацию кх. Нажимаем на кнопку «Save & Test», получаем сообщение об успешном соединении.
Теперь добавим новый dashboard:

Добавим панель:

Выберем базу и соответствующие колонки для работы с датами:

Перейдем к запросу:

Получили график, но хочется конкретики. Давайте выведем средний latency с округлением даты-с-временем вниз до начала пятиминутного интервала:

Теперь на графике отображаются выбранные данные, можем ориентироваться на них. Для оповещений настроить триггеры, группировать по события и многое другое.

Профилировщик, ни в коем случае, не является заменой инструментам: xhprof (facebook), xhprof (tideways), liveprof от (Badoo). А только дополняет их.
Весь исходный код находится на githubмодель профилировщика, сервис, BulkWriteCommand, BulkWriterJob и middleware (1, 2).
Установка пакета:
composer req bavix/laravel-prof

Настройка соединений (config/database.php), добавляем clickhouse:
'bavix::clickhouse' => [
    'driver' => 'bavix::clickhouse',
    'host' => env('CH_HOST'),
    'port' => env('CH_PORT'),
    'database' => env('CH_DATABASE'),
    'username' => env('CH_USERNAME'),
    'password' => env('CH_PASSWORD'),
],

Начало работы:
use Bavix\Prof\Services\ProfileLogService;
// ...
app(ProfileLogService::class)->tick('event-name');
// код
app(ProfileLogService::class)->tick('event-name');

Для отправки пачки в очередь нужно добавить команду в cron:
* * * * * php /var/www/site.com/artisan entry:bulk

Также необходимо запустить консьюмер:
php artisan queue:work --sleep=3 --tries=3

Рекомендуется настроить supervisor. Конфиг (5 консьюмеров):
[program:bulk_write]
process_name=%(program_name)s_%(process_num)02d
command=php /var/www/site.com/artisan queue:work --sleep=3 --tries=3
autostart=true
autorestart=true
user=www-data
numprocs=5
redirect_stderr=true
stopwaitsecs=3600

UPD:
1. ClickHouse нативно умеет тянуть данные из очереди kafka. Спасибо, sdm
===========
Источник:
habr.com
===========

Похожие новости: Теги для поиска: #_vizualizatsija_dannyh (Визуализация данных), #_vysokaja_proizvoditelnost (Высокая производительность), #_laravel, #_open_source, #_php, #_clickhouse, #_clickhousegrafana, #_laravel, #_php, #_redis, #_queue_broker, #_queue, #_profiling, #_vizualizatsija_dannyh (
Визуализация данных
)
, #_vysokaja_proizvoditelnost (
Высокая производительность
)
, #_laravel, #_open_source, #_php
Профиль  ЛС 
Показать сообщения:     

Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы

Текущее время: 22-Ноя 17:50
Часовой пояс: UTC + 5