[DevOps, Kubernetes, Серверное администрирование, Системное администрирование] Fluentd: почему важно настроить выходной буфер
Автор
Сообщение
news_bot ®
Стаж: 6 лет 9 месяцев
Сообщений: 27286
В наше время невозможно представить проект на базе Kubernetes без стека ELK, с помощью которого сохраняются логи как приложений, так и системных компонентов кластера. В своей практике мы используем стек EFK с Fluentd вместо Logstash.
Fluentd — это современный универсальный коллектор логов, набирающий всё большую популярность и присоединившийся к Cloud Native Computing Foundation, из-за чего вектор его разработки ориентирован на использование совместно с Kubernetes.
Факт использования Fluentd вместо Logstash не изменяет общую суть программного комплекса, однако, для Fluentd характерны свои специфические нюансы, следующие из его многофункциональности.
Например, начав использовать EFK в нагруженном проекте с высокой интенсивностью записи логов, мы столкнулись с тем, что в Kibana некоторые сообщения отображаются повторно по несколько раз. В данной статье мы расскажем вам, по какой причине происходит данное явление и как решить проблему.
Проблема дублирования документов
В наших проектах Fluentd развернут как DaemonSet (автоматически запускается в одном экземпляре на каждом узле кластера Kubernetes) и отслеживает stdout логи контейнеров в /var/log/containers. После сбора и обработки логи в виде JSON-документов поступают в ElasticSearch, поднятый в кластерном либо standalone виде, в зависимости от масштабов проекта и требований к производительности и отказоустойчивости. В качестве графического интерфейса используется Kibana.
При использовании Fluentd с буферизирующим плагином на выходе мы столкнулись с ситуацией, когда некоторые документы в ElasticSearch имеют полностью одинаковое содержание и отличаются лишь идентификатором. Убедиться, что это именно повтор сообщения можно на примере лога Nginx. В файле лога данное сообщение существует в единственном экземпляре:
127.0.0.1 192.168.0.1 - [28/Feb/2013:12:00:00 +0900] "GET / HTTP/1.1" 200 777 "-" "Opera/12.0" -
Однако, в ElasticSearch существует несколько документов, содержащих данное сообщение:
{
"_index": "test-custom-prod-example-2020.01.02",
"_type": "_doc",
"_id": "HgGl_nIBR8C-2_33RlQV",
"_version": 1,
"_score": 0,
"_source": {
"service": "test-custom-prod-example",
"container_name": "nginx",
"namespace": "test-prod",
"@timestamp": "2020-01-14T05:29:47.599052886 00:00",
"log": "127.0.0.1 192.168.0.1 - [28/Feb/2013:12:00:00 0900] "GET / HTTP/1.1" 200 777 "-" "Opera/12.0" -",
"tag": "custom-log"
}
}
{
"_index": "test-custom-prod-example-2020.01.02",
"_type": "_doc",
"_id": "IgGm_nIBR8C-2_33e2ST",
"_version": 1,
"_score": 0,
"_source": {
"service": "test-custom-prod-example",
"container_name": "nginx",
"namespace": "test-prod",
"@timestamp": "2020-01-14T05:29:47.599052886 00:00",
"log": "127.0.0.1 192.168.0.1 - [28/Feb/2013:12:00:00 0900] "GET / HTTP/1.1" 200 777 "-" "Opera/12.0" -",
"tag": "custom-log"
}
}
Притом, повторов может быть больше двух.
Во время фиксации данной проблемы в логах Fluentd можно наблюдать большое количество предупреждений следующего содержания:
2020-01-16 01:46:46 +0000 [warn]: [test-prod] failed to flush the buffer. retry_time=4 next_retry_seconds=2020-01-16 01:46:53 +0000 chunk="59c37fc3fb320608692c352802b973ce" error_class=Fluent::Plugin::ElasticsearchOutput::RecoverableRequestFailure error="could not push logs to Elasticsearch cluster ({:host=>"elasticsearch", :port=>9200, :scheme=>"http", :user=>"elastic", :password=>"obfuscated"}): read timeout reached"
Данные предупреждения возникают когда ElasticSearch не может вернуть ответ на запрос за установленное параметром request_timeout время, из-за чего пересылаемый фрагмент буфера не может быть очищен. После этого Fluentd пытается отправить фрагмент буфера в ElasticSearch повторно и через произвольное число попыток операция завершается успешно:
2020-01-16 01:47:05 +0000 [warn]: [test-prod] retry succeeded. chunk_id="59c37fc3fb320608692c352802b973ce"
2020-01-16 01:47:05 +0000 [warn]: [test-prod] retry succeeded. chunk_id="59c37fad241ab300518b936e27200747"
2020-01-16 01:47:05 +0000 [warn]: [test-dev] retry succeeded. chunk_id="59c37fc11f7ab707ca5de72a88321cc2"
2020-01-16 01:47:05 +0000 [warn]: [test-dev] retry succeeded. chunk_id="59c37fb5adb70c06e649d8c108318c9b"
2020-01-16 01:47:15 +0000 [warn]: [kube-system] retry succeeded. chunk_id="59c37f63a9046e6dff7e9987729be66f"
Однако, ElasticSearch воспринимает каждый из пересланных фрагментов буфера как уникальный и присваивает им уникальные значения полей _id при индексации. Таким образом и появляются копии сообщений.
В Kibana это выглядит так:
Решение проблемы
Существует несколько вариантов решения данной проблемы. Один из них — встроенный в плагин fluent-plugin-elasticsearch механизм генерации уникального хеша для каждого документа. Если использовать данный механизм, ElasticSearch будет распознавать повторы на стадии пересылки и не допускать дублирования документов. Но нельзя не учитывать, что данный способ решения проблемы борется со следствием и не устраняет ошибку с нехваткой тайм-аута, поэтому мы отказались от его применения.
Мы используем буферизирующий плагин на выходе Fluentd, чтобы не допустить потери логов в случае кратковременных неполадок с сетью или возросшей интенсивности записи логов. Если по какой-либо причине ElasticSearch не может мгновенно записать документ в индекс, документ попадает в очередь, которая хранится на диске. Поэтому, в нашем случае, чтобы устранить источник проблемы, которая приводит к возникновению описанной выше ошибки, необходимо задать корректные значения параметров буферизации, при которых выходной буфер Fluentd будет достаточного объема и при этом успевать очищаться за отведенное время.
Стоит отметить, что значения параметров, речь о которых пойдет ниже, индивидуальны в каждом конкретном случае использования буферизации в выходных плагинах, так как зависят от множества факторов: интенсивности записи в лог сообщений сервисами, производительности дисковой системы, загруженности сетевого канала и его пропускной способности. Поэтому, чтобы получить подходящие для каждого отдельного случая, но не избыточные настройки буфера, избегая длительного перебора вслепую, можно воспользоваться отладочной информацией, которую пишет в свой лог Fluentd в процессе работы и сравнительно быстро получить корректные значения.
На момент фиксации проблемы конфигурация выглядела следующим образом:
<buffer>
@type file
path /var/log/fluentd-buffers/kubernetes.test.buffer
flush_mode interval
retry_type exponential_backoff
flush_thread_count 2
flush_interval 5s
retry_forever
retry_max_interval 30
chunk_limit_size 8M
queue_limit_length 8
overflow_action block
</buffer>
В ходе решения проблемы вручную подбирались значения следующих параметров:
chunk_limit_size — размер чанков, на которые разбиваются сообщения в буфере.
- flush_interval — интервал времени, через который происходит очистка буфера.
- queue_limit_length — максимальное количество чанков в очереди.
- request_timeout — время, на которое устанавливается соединение между Fluentd и ElasticSearch.
Общий размер буфера можно вычислить, перемножив параметры queue_limit_length и chunk_limit_size, что можно толковать как «максимальное количество чанков в очереди, каждый из которых имеет заданный объем». При недостаточном размере буфера в логах будет появляться следующее предупреждение:
2020-01-21 10:22:57 +0000 [warn]: [test-prod] failed to write data into buffer by buffer overflow action=:block
Оно означает, что буфер не успевает очиститься за отведенное время и данные, которые поступают в заполненный буфер, блокируются, что приведет к потере части логов.
Увеличить буфер можно двумя способами: увеличив либо размер каждого чанка в очереди, либо количество чанков, которые могут находиться в очереди.
Если установить размер чанка chunk_limit_size более 32 мегабайт, то ElasticSeacrh не примет его, так как входящий пакет получится слишком большим. Поэтому, если необходимо увеличить буфер дополнительно, лучше увеличивать максимальную длину очереди queue_limit_length.
Когда буфер перестанет переполняться и останется только сообщение о нехватке тайм-аута, можно приступить к увеличению параметра request_timeout. Однако, при установке значения больше 20 секунд, в логах Fluentd начнут появляться следующие предупреждения:
2020-01-21 09:55:33 +0000 [warn]: [test-dev] buffer flush took longer time than slow_flush_log_threshold: elapsed_time=20.85753920301795 slow_flush_log_threshold=20.0 plugin_id="postgresql-dev"
Данное сообщение никак не влияет на работу системы и означает, что время очистки буфера заняло больше, чем установлено параметром slow_flush_log_threshold. Это отладочная информация и мы используем её при подборе значения параметра request_timeout.
Обобщенный алгоритм подбора выглядит следующим образом:
- Установить значение request_timeout гарантированно большим, чем необходимо (сотни секунд). На время настройки основным критерием правильности установки данного параметра будет являться исчезновение предупреждений у нехватке тайм-аута.
- Дождаться сообщений о превышении порога slow_flush_log_threshold. В тексте предупреждения в поле elapsed_time будет написано реальное время очистки буфера.
- Установить значение request_timeout больше, чем максимальное значение elapsed_time, полученное за период наблюдения. Мы рассчитываем значение request_timeout как elapsed_time + 50%.
- Чтобы убрать из лога предупреждения о долгой очистке буфера, можно поднять значение slow_flush_log_threshold. Мы рассчитываем данное значение как elapsed_time + 25%.
Итоговые значения данных параметров, как было замечено ранее, получаются индивидуальными для каждого случая. Следуя приведенному выше алгоритму, мы гарантированно устраняем ошибку, приводящую к повтору сообщений.
В таблице ниже показано, как изменяется количество ошибок за сутки, приводящих к дублированию сообщений, в процессе подбора значений описанных выше параметров:
node-1
node-2
node-3
node-4
До/После
До/После
До/После
До/После
failed to flush the buffer
1749/2
694/2
47/0
1121/2
retry succeeded
410/2
205/1
24/0
241/2
Стоит дополнительно отметить, что полученные настройки могут потерять свою актуальность в процессе роста проекта и, соответственно, увеличения количества логов. Первичным признаком нехватки установленного тайм-аута является возвращение в лог Fluentd сообщений о долгой очистке буфера, то есть превышение порога slow_flush_log_threshold. С этого момента есть ещё небольшой запас до превышения параметра request_timeout, поэтому необходимо своевременно отреагировать на данные сообщения и повторно выполнить процесс подбора оптимальных настроек, описанный выше.
Заключение
Тонкая настройка выходного буфера Fluentd является одним из главных этапов настройки EFK стека, определяющим стабильность его работы и корректность размещения документов в индексах. Ориентируясь на описанный алгоритм настройки, можно быть уверенным, что все логи будут записаны в индекс ElasticSearch в правильном порядке, без повторений и потерь.
Также читайте другие статьи в нашем блоге:
- Подружили Go и Zabbix 5.0
- Обновление Kubernetes-кластера без простоя
- Kubernetes: почему так важно настроить управление ресурсами системы?
- Три простых приема для уменьшения Docker-образов
- Резервное копирование большого количества разнородных web-проектов
===========
Источник:
habr.com
===========
Похожие новости:
- [Браузеры, Информационная безопасность, Серверное администрирование] Почему удостоверяющие центры не соблюдают требование CA/Browser к сертификатам
- [Agile, DevOps, Управление разработкой, Учебный процесс в IT] DevOps vs Agile: В чем разница (перевод)
- [Информационная безопасность, Сетевые технологии, Системное администрирование] NGFW для малого бизнеса. Новая линейка CheckPoint 1500 Security Gateway
- [DevOps, Облачные сервисы, Хранение данных, Хранилища данных] Пример event-driven приложения на основе вебхуков в объектном S3-хранилище Mail.ru Cloud Solutions
- [IT-инфраструктура, Распределённые системы, Сетевое оборудование, Системное администрирование] Добавление ноды в Skydive топологию вручную через Skydive client
- [Cisco, Информационная безопасность, Сетевые технологии, Системное администрирование] StealthWatch: анализ и расследование инцидентов. Часть 3
- [Облачные вычисления, DevOps, Google Cloud Platform, Python] Production-ready chatbot in GCP for less than a dollar
- [DevOps, Kubernetes, Open source, Системное администрирование] Простое создание Kubernetes-операторов с shell-operator: прогресс проекта за год
- [DevOps] Развитие сообщества Open DevOps Community. Тимур Гильмуллин. Александр Паздников
- [IT-стандарты, Конференции, DevOps] Как я не съездил в Лондон, но поучаствовал в London DevOps Enterprise Summit
Теги для поиска: #_devops, #_kubernetes, #_servernoe_administrirovanie (Серверное администрирование), #_sistemnoe_administrirovanie (Системное администрирование), #_fluentd, #_elk, #_kubernetes, #_devops, #_blog_kompanii_nixys (
Блог компании Nixys
), #_devops, #_kubernetes, #_servernoe_administrirovanie (
Серверное администрирование
), #_sistemnoe_administrirovanie (
Системное администрирование
)
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 21:53
Часовой пояс: UTC + 5
Автор | Сообщение |
---|---|
news_bot ®
Стаж: 6 лет 9 месяцев |
|
В наше время невозможно представить проект на базе Kubernetes без стека ELK, с помощью которого сохраняются логи как приложений, так и системных компонентов кластера. В своей практике мы используем стек EFK с Fluentd вместо Logstash. Fluentd — это современный универсальный коллектор логов, набирающий всё большую популярность и присоединившийся к Cloud Native Computing Foundation, из-за чего вектор его разработки ориентирован на использование совместно с Kubernetes. Факт использования Fluentd вместо Logstash не изменяет общую суть программного комплекса, однако, для Fluentd характерны свои специфические нюансы, следующие из его многофункциональности. Например, начав использовать EFK в нагруженном проекте с высокой интенсивностью записи логов, мы столкнулись с тем, что в Kibana некоторые сообщения отображаются повторно по несколько раз. В данной статье мы расскажем вам, по какой причине происходит данное явление и как решить проблему. Проблема дублирования документов В наших проектах Fluentd развернут как DaemonSet (автоматически запускается в одном экземпляре на каждом узле кластера Kubernetes) и отслеживает stdout логи контейнеров в /var/log/containers. После сбора и обработки логи в виде JSON-документов поступают в ElasticSearch, поднятый в кластерном либо standalone виде, в зависимости от масштабов проекта и требований к производительности и отказоустойчивости. В качестве графического интерфейса используется Kibana. При использовании Fluentd с буферизирующим плагином на выходе мы столкнулись с ситуацией, когда некоторые документы в ElasticSearch имеют полностью одинаковое содержание и отличаются лишь идентификатором. Убедиться, что это именно повтор сообщения можно на примере лога Nginx. В файле лога данное сообщение существует в единственном экземпляре: 127.0.0.1 192.168.0.1 - [28/Feb/2013:12:00:00 +0900] "GET / HTTP/1.1" 200 777 "-" "Opera/12.0" -
Однако, в ElasticSearch существует несколько документов, содержащих данное сообщение: {
"_index": "test-custom-prod-example-2020.01.02", "_type": "_doc", "_id": "HgGl_nIBR8C-2_33RlQV", "_version": 1, "_score": 0, "_source": { "service": "test-custom-prod-example", "container_name": "nginx", "namespace": "test-prod", "@timestamp": "2020-01-14T05:29:47.599052886 00:00", "log": "127.0.0.1 192.168.0.1 - [28/Feb/2013:12:00:00 0900] "GET / HTTP/1.1" 200 777 "-" "Opera/12.0" -", "tag": "custom-log" } } { "_index": "test-custom-prod-example-2020.01.02", "_type": "_doc", "_id": "IgGm_nIBR8C-2_33e2ST", "_version": 1, "_score": 0, "_source": { "service": "test-custom-prod-example", "container_name": "nginx", "namespace": "test-prod", "@timestamp": "2020-01-14T05:29:47.599052886 00:00", "log": "127.0.0.1 192.168.0.1 - [28/Feb/2013:12:00:00 0900] "GET / HTTP/1.1" 200 777 "-" "Opera/12.0" -", "tag": "custom-log" } } Притом, повторов может быть больше двух. Во время фиксации данной проблемы в логах Fluentd можно наблюдать большое количество предупреждений следующего содержания: 2020-01-16 01:46:46 +0000 [warn]: [test-prod] failed to flush the buffer. retry_time=4 next_retry_seconds=2020-01-16 01:46:53 +0000 chunk="59c37fc3fb320608692c352802b973ce" error_class=Fluent::Plugin::ElasticsearchOutput::RecoverableRequestFailure error="could not push logs to Elasticsearch cluster ({:host=>"elasticsearch", :port=>9200, :scheme=>"http", :user=>"elastic", :password=>"obfuscated"}): read timeout reached"
Данные предупреждения возникают когда ElasticSearch не может вернуть ответ на запрос за установленное параметром request_timeout время, из-за чего пересылаемый фрагмент буфера не может быть очищен. После этого Fluentd пытается отправить фрагмент буфера в ElasticSearch повторно и через произвольное число попыток операция завершается успешно: 2020-01-16 01:47:05 +0000 [warn]: [test-prod] retry succeeded. chunk_id="59c37fc3fb320608692c352802b973ce"
2020-01-16 01:47:05 +0000 [warn]: [test-prod] retry succeeded. chunk_id="59c37fad241ab300518b936e27200747" 2020-01-16 01:47:05 +0000 [warn]: [test-dev] retry succeeded. chunk_id="59c37fc11f7ab707ca5de72a88321cc2" 2020-01-16 01:47:05 +0000 [warn]: [test-dev] retry succeeded. chunk_id="59c37fb5adb70c06e649d8c108318c9b" 2020-01-16 01:47:15 +0000 [warn]: [kube-system] retry succeeded. chunk_id="59c37f63a9046e6dff7e9987729be66f" Однако, ElasticSearch воспринимает каждый из пересланных фрагментов буфера как уникальный и присваивает им уникальные значения полей _id при индексации. Таким образом и появляются копии сообщений. В Kibana это выглядит так: Решение проблемы Существует несколько вариантов решения данной проблемы. Один из них — встроенный в плагин fluent-plugin-elasticsearch механизм генерации уникального хеша для каждого документа. Если использовать данный механизм, ElasticSearch будет распознавать повторы на стадии пересылки и не допускать дублирования документов. Но нельзя не учитывать, что данный способ решения проблемы борется со следствием и не устраняет ошибку с нехваткой тайм-аута, поэтому мы отказались от его применения. Мы используем буферизирующий плагин на выходе Fluentd, чтобы не допустить потери логов в случае кратковременных неполадок с сетью или возросшей интенсивности записи логов. Если по какой-либо причине ElasticSearch не может мгновенно записать документ в индекс, документ попадает в очередь, которая хранится на диске. Поэтому, в нашем случае, чтобы устранить источник проблемы, которая приводит к возникновению описанной выше ошибки, необходимо задать корректные значения параметров буферизации, при которых выходной буфер Fluentd будет достаточного объема и при этом успевать очищаться за отведенное время. Стоит отметить, что значения параметров, речь о которых пойдет ниже, индивидуальны в каждом конкретном случае использования буферизации в выходных плагинах, так как зависят от множества факторов: интенсивности записи в лог сообщений сервисами, производительности дисковой системы, загруженности сетевого канала и его пропускной способности. Поэтому, чтобы получить подходящие для каждого отдельного случая, но не избыточные настройки буфера, избегая длительного перебора вслепую, можно воспользоваться отладочной информацией, которую пишет в свой лог Fluentd в процессе работы и сравнительно быстро получить корректные значения. На момент фиксации проблемы конфигурация выглядела следующим образом: <buffer>
@type file path /var/log/fluentd-buffers/kubernetes.test.buffer flush_mode interval retry_type exponential_backoff flush_thread_count 2 flush_interval 5s retry_forever retry_max_interval 30 chunk_limit_size 8M queue_limit_length 8 overflow_action block </buffer> В ходе решения проблемы вручную подбирались значения следующих параметров: chunk_limit_size — размер чанков, на которые разбиваются сообщения в буфере.
Общий размер буфера можно вычислить, перемножив параметры queue_limit_length и chunk_limit_size, что можно толковать как «максимальное количество чанков в очереди, каждый из которых имеет заданный объем». При недостаточном размере буфера в логах будет появляться следующее предупреждение: 2020-01-21 10:22:57 +0000 [warn]: [test-prod] failed to write data into buffer by buffer overflow action=:block
Оно означает, что буфер не успевает очиститься за отведенное время и данные, которые поступают в заполненный буфер, блокируются, что приведет к потере части логов. Увеличить буфер можно двумя способами: увеличив либо размер каждого чанка в очереди, либо количество чанков, которые могут находиться в очереди. Если установить размер чанка chunk_limit_size более 32 мегабайт, то ElasticSeacrh не примет его, так как входящий пакет получится слишком большим. Поэтому, если необходимо увеличить буфер дополнительно, лучше увеличивать максимальную длину очереди queue_limit_length. Когда буфер перестанет переполняться и останется только сообщение о нехватке тайм-аута, можно приступить к увеличению параметра request_timeout. Однако, при установке значения больше 20 секунд, в логах Fluentd начнут появляться следующие предупреждения: 2020-01-21 09:55:33 +0000 [warn]: [test-dev] buffer flush took longer time than slow_flush_log_threshold: elapsed_time=20.85753920301795 slow_flush_log_threshold=20.0 plugin_id="postgresql-dev"
Данное сообщение никак не влияет на работу системы и означает, что время очистки буфера заняло больше, чем установлено параметром slow_flush_log_threshold. Это отладочная информация и мы используем её при подборе значения параметра request_timeout. Обобщенный алгоритм подбора выглядит следующим образом:
Итоговые значения данных параметров, как было замечено ранее, получаются индивидуальными для каждого случая. Следуя приведенному выше алгоритму, мы гарантированно устраняем ошибку, приводящую к повтору сообщений. В таблице ниже показано, как изменяется количество ошибок за сутки, приводящих к дублированию сообщений, в процессе подбора значений описанных выше параметров: node-1 node-2 node-3 node-4 До/После До/После До/После До/После failed to flush the buffer 1749/2 694/2 47/0 1121/2 retry succeeded 410/2 205/1 24/0 241/2 Стоит дополнительно отметить, что полученные настройки могут потерять свою актуальность в процессе роста проекта и, соответственно, увеличения количества логов. Первичным признаком нехватки установленного тайм-аута является возвращение в лог Fluentd сообщений о долгой очистке буфера, то есть превышение порога slow_flush_log_threshold. С этого момента есть ещё небольшой запас до превышения параметра request_timeout, поэтому необходимо своевременно отреагировать на данные сообщения и повторно выполнить процесс подбора оптимальных настроек, описанный выше. Заключение Тонкая настройка выходного буфера Fluentd является одним из главных этапов настройки EFK стека, определяющим стабильность его работы и корректность размещения документов в индексах. Ориентируясь на описанный алгоритм настройки, можно быть уверенным, что все логи будут записаны в индекс ElasticSearch в правильном порядке, без повторений и потерь. Также читайте другие статьи в нашем блоге:
=========== Источник: habr.com =========== Похожие новости:
Блог компании Nixys ), #_devops, #_kubernetes, #_servernoe_administrirovanie ( Серверное администрирование ), #_sistemnoe_administrirovanie ( Системное администрирование ) |
|
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 21:53
Часовой пояс: UTC + 5