[Python, Алгоритмы, Big Data, Машинное обучение, Искусственный интеллект] DataScience Digest — 10.06.21
Автор
Сообщение
news_bot ®
Стаж: 6 лет 9 месяцев
Сообщений: 27286
Приветствую всех!На протяжении долгого времени я не публиковал свежих выпусков Data Science Digest, а сейчас пришло время его возродить. Выходить дайджест будет еженедельно по четвергам. Встречайте свежий выпуск дайджеста полезных материалов из мира Data Science & Machine Learning и не забывайте подписываться на наш Telegram-канал.СтатьиFraud Detection: Using Relational Graph Learning to Detect Collusion — В этой статье команда Uber Engineering демонстрирует, как можно использовать сверточные сети на реляционных графах (RGCN) для обнаружения мошенничества.Airflow and Ray: A Data Science Story — Из этой статьи вы узнаете о Ray для Apache Airflow, который позволяет пользователям преобразовывать Airflow DAG в масштабируемые ML пайплайны.PyCaret 101 — For Beginners — Вводная статья о PyCaret, от установки до анализа результатов работы ML пайплайна.High-Performance Speech Recognition with No Supervision at All — В этой статье команда Facebook AI представляет wav2vec Unsupervised (wav2vec-U), кардинально новую автоматизированную систему распознавания речи. Introducing Orbit, An Open Source Package for Time Series Inference and Forecasting — Вводная статья об Orbit (Object-ORiented BayesIan Time Series), новом интерфейсе, разработанном командой Uber Engineering.Lessons on ML Platforms — From Netflix, DoorDash, Spotify, and More — Здесь вы найдете решения проблем, с которыми сталкиваются инженеры при разработке ML платформ. Лучшие практики, инструменты и подходы к менеджменту.Easy MLOps with PyCaret + MLflow — Небольшой туториал об использовании PyCaret в связке с MLflow для MLOps и более эффективных ML экспериментов.R vs Python: The Data Science Language Debate — Обзор двух наиболее популярных языков, используемых в Data Science. Взгляните на извечный спор под другим углом.Data Scientist vs Machine Learning Engineer Skills. Here’s the Difference — В чем разница между Дата Сайентистом и ML инженером? Возможно, вы найдете устраивающий ответ в этой статье.AutoNLP: Automatic Text Classification with SOTA Models — Обзор и небольшой туториал по AutoML, сервиса для автоматизации МЛ процессов для NLP моделей.Научные статьиAnimating Pictures with Eulerian Motion Fields — В этой научной статье описывается полностью автоматический метод преобразования неподвижных изображений в реалистичное анимированное зацикленное видео. DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort — DatasetGAN — автоматический подход к созданию массивных датасетов высококачественных семантически сегментированных изображений. Превосходит аналогичные методы по точности и эффективности.Long Text Generation by Modeling Sentence-Level and Discourse-Level Coherence — В этой статье авторы предлагают новую модель генерации связного текста. Тесты показывают, что она генерирует более логичные тексты, чем конкуренты.CogView: Mastering Text-to-Image Generation via Transformers — CogView — трансформер с 4 миллиардами параметров и токенизатором VQ-VAE, который, по словам авторов, превосходит другие GAN модели.GAN Prior Embedded Network for Blind Face Restoration in the Wild — В этой статье описывается, как можно решить проблему восстановления “слепого лица” по сильно ухудшенным изображениям лиц, собранных в естественных условиях.Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency — В этой статье затрагивается тема непредвзятости МЛ алгоритмов в Twitter. В частности, исследуется работа системы автоматической обрезки изображений на датасетах с людьми разных расс.ВидеоFull Stack Deep Learning - UC Berkeley - 2021 — Сборник лекций по глубокому обучению от профессоров Калифорнийского университета в Беркли. Всего 22 лекции.ПроектыKnow Your Data — Коллекция 70+ TensorFlow датасетов с возможностью их просмотра.ИнструментыAlbumentations — CV библиотека для быстрого и гибкого аугментирования изображений, которая помогает повысить производительность глубоких сверточных нейронных сетей. Инструмент может использоваться для различных задач, включая классификацию, сегментацию и обнаружение объектов.Спасибо, что дочитали этот выпуск. Надеюсь, каждый нашел для себя что-то полезное. Буду благодарен за любые предложения для следующего дайджеста.Присоединяйтесь к Telegram-каналу дайджеста и его страницам в соцсетях: Medium, Facebook, Twitter, LinkedIn, а также подписывайтесь на нас в substack.
===========
Источник:
habr.com
===========
Похожие новости:
- [Машинное обучение, Научно-популярное, Мозг, Здоровье] Бодрствующий мозг учится в четыре раза быстрее, чем спящий
- [Искусственный интеллект, Интернет вещей, Автомобильные гаджеты, Транспорт] Контроль сонливости водителя, кресла с учётом женской анатомии: что нового в автомобильных технологиях безопасности?
- [Алгоритмы, Обработка изображений, Социальные сети и сообщества] Instagram объяснил, как подбирает посты для алгоритмической ленты
- [Алгоритмы, Машинное обучение, Научно-популярное, Мозг, Здоровье] Учёные научились предсказывать по ЭЭГ, какие люди нравятся испытуемому
- [Производство и разработка электроники, Искусственный интеллект, Интернет вещей, Транспорт, IT-компании] Интернет вещей и ИИ: Bosch открыла в Дрездене завод по производству полупроводников
- [Машинное обучение] r (перевод)
- [Big Data, Искусственный интеллект, Финансы в IT, Data Engineering] Чтобы потолка не стало, а крышу не снесло: о чем новый подкаст ВТБ
- [Big Data, Изучение языков] «Симпсоны» — лучшее TV-шоу для изучения английских слов. Доказано Big Data
- [Криптография, Open source, Python, Программирование] Как использовать Python для проверки протокола Signal (перевод)
- [Big Data, Искусственный интеллект, Здоровье, Будущее здесь] Продлить жизнь и побороть смерть — на что способен искусственный интеллект
Теги для поиска: #_python, #_algoritmy (Алгоритмы), #_big_data, #_mashinnoe_obuchenie (Машинное обучение), #_iskusstvennyj_intellekt (Искусственный интеллект), #_machine_learning, #_data_science, #_data_science_digest, #_computer_vision, #_deep_learning, #_artificial_intelligence, #_natural_language_processing, #_digest, #_python, #_algoritmy (
Алгоритмы
), #_big_data, #_mashinnoe_obuchenie (
Машинное обучение
), #_iskusstvennyj_intellekt (
Искусственный интеллект
)
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 15:26
Часовой пояс: UTC + 5
Автор | Сообщение |
---|---|
news_bot ®
Стаж: 6 лет 9 месяцев |
|
Приветствую всех!На протяжении долгого времени я не публиковал свежих выпусков Data Science Digest, а сейчас пришло время его возродить. Выходить дайджест будет еженедельно по четвергам. Встречайте свежий выпуск дайджеста полезных материалов из мира Data Science & Machine Learning и не забывайте подписываться на наш Telegram-канал.СтатьиFraud Detection: Using Relational Graph Learning to Detect Collusion — В этой статье команда Uber Engineering демонстрирует, как можно использовать сверточные сети на реляционных графах (RGCN) для обнаружения мошенничества.Airflow and Ray: A Data Science Story — Из этой статьи вы узнаете о Ray для Apache Airflow, который позволяет пользователям преобразовывать Airflow DAG в масштабируемые ML пайплайны.PyCaret 101 — For Beginners — Вводная статья о PyCaret, от установки до анализа результатов работы ML пайплайна.High-Performance Speech Recognition with No Supervision at All — В этой статье команда Facebook AI представляет wav2vec Unsupervised (wav2vec-U), кардинально новую автоматизированную систему распознавания речи. Introducing Orbit, An Open Source Package for Time Series Inference and Forecasting — Вводная статья об Orbit (Object-ORiented BayesIan Time Series), новом интерфейсе, разработанном командой Uber Engineering.Lessons on ML Platforms — From Netflix, DoorDash, Spotify, and More — Здесь вы найдете решения проблем, с которыми сталкиваются инженеры при разработке ML платформ. Лучшие практики, инструменты и подходы к менеджменту.Easy MLOps with PyCaret + MLflow — Небольшой туториал об использовании PyCaret в связке с MLflow для MLOps и более эффективных ML экспериментов.R vs Python: The Data Science Language Debate — Обзор двух наиболее популярных языков, используемых в Data Science. Взгляните на извечный спор под другим углом.Data Scientist vs Machine Learning Engineer Skills. Here’s the Difference — В чем разница между Дата Сайентистом и ML инженером? Возможно, вы найдете устраивающий ответ в этой статье.AutoNLP: Automatic Text Classification with SOTA Models — Обзор и небольшой туториал по AutoML, сервиса для автоматизации МЛ процессов для NLP моделей.Научные статьиAnimating Pictures with Eulerian Motion Fields — В этой научной статье описывается полностью автоматический метод преобразования неподвижных изображений в реалистичное анимированное зацикленное видео. DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort — DatasetGAN — автоматический подход к созданию массивных датасетов высококачественных семантически сегментированных изображений. Превосходит аналогичные методы по точности и эффективности.Long Text Generation by Modeling Sentence-Level and Discourse-Level Coherence — В этой статье авторы предлагают новую модель генерации связного текста. Тесты показывают, что она генерирует более логичные тексты, чем конкуренты.CogView: Mastering Text-to-Image Generation via Transformers — CogView — трансформер с 4 миллиардами параметров и токенизатором VQ-VAE, который, по словам авторов, превосходит другие GAN модели.GAN Prior Embedded Network for Blind Face Restoration in the Wild — В этой статье описывается, как можно решить проблему восстановления “слепого лица” по сильно ухудшенным изображениям лиц, собранных в естественных условиях.Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency — В этой статье затрагивается тема непредвзятости МЛ алгоритмов в Twitter. В частности, исследуется работа системы автоматической обрезки изображений на датасетах с людьми разных расс.ВидеоFull Stack Deep Learning - UC Berkeley - 2021 — Сборник лекций по глубокому обучению от профессоров Калифорнийского университета в Беркли. Всего 22 лекции.ПроектыKnow Your Data — Коллекция 70+ TensorFlow датасетов с возможностью их просмотра.ИнструментыAlbumentations — CV библиотека для быстрого и гибкого аугментирования изображений, которая помогает повысить производительность глубоких сверточных нейронных сетей. Инструмент может использоваться для различных задач, включая классификацию, сегментацию и обнаружение объектов.Спасибо, что дочитали этот выпуск. Надеюсь, каждый нашел для себя что-то полезное. Буду благодарен за любые предложения для следующего дайджеста.Присоединяйтесь к Telegram-каналу дайджеста и его страницам в соцсетях: Medium, Facebook, Twitter, LinkedIn, а также подписывайтесь на нас в substack. =========== Источник: habr.com =========== Похожие новости:
Алгоритмы ), #_big_data, #_mashinnoe_obuchenie ( Машинное обучение ), #_iskusstvennyj_intellekt ( Искусственный интеллект ) |
|
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 15:26
Часовой пояс: UTC + 5