[Python, Программирование] Как ускорить код на Python в тысячу раз (перевод)
Автор
Сообщение
news_bot ®
Стаж: 6 лет 9 месяцев
Сообщений: 27286
Обычно говорят, что Python очень медленный
В любых соревнованиях по скорости выполнения программ Python обычно занимает последние места. Кто-то говорит, что это из-за того, что Python является интерпретируемым языком. Все интерпретируемые языки медленные. Но мы знаем, что Java тоже язык такого типа, её байткод интерпретируется JVM. Как показано, в этом бенчмарке, Java намного быстрее, чем Python.
Вот пример, способный показать медленность Python. Используем традиционный цикл for для получения обратных величин:
import numpy as np
np.random.seed(0)
values = np.random.randint(1, 100, size=1000000)
def get_reciprocal(values):
output = np.empty(len(values))
for i in range(len(values)):
output[i] = 1.0/values[i]
%timeit get_reciprocal(values)
Результат:
3,37 с ± 582 мс на цикл (среднее значение ± стандартное отклонение после 7 прогонов по 1 циклу)
Ничего себе, на вычисление всего 1 000 000 обратных величин требуется 3,37 с. Та же логика на C выполняется за считанные мгновения: 9 мс; C# требуется 19 мс; Nodejs требуется 26 мс; Java требуется 5 мс(!), а Python требуется аж целых 3,37 СЕКУНДЫ. (Весь код тестов приведён в конце).
Первопричина такой медленности
Обычно мы называем Python языком программирования с динамической типизацией. В программе на Python всё представляет собой объекты; иными словами, каждый раз, когда код на Python обрабатывает данные, ему нужно распаковывать обёртку объекта. Внутри цикла for каждой итерации требуется распаковывать объекты, проверять тип и вычислять обратную величину. Все эти 3 секунды тратятся на проверку типов.
В отличие от традиционных языков наподобие C, где доступ к данным осуществляется напрямую, в Python множество тактов ЦП используется для проверки типа.
Даже простое присвоение числового значения — это долгий процесс.
a = 1
Шаг 1. Задаём a->PyObject_HEAD->typecode тип integer
Шаг 2. Присваиваем a->val =1
Подробнее о том, почему Python медленный, стоит прочитать в чудесной статье Джейка: Why Python is Slow: Looking Under the Hood
Итак, существует ли способ, позволяющий обойти проверку типов, а значит, и повысить производительность?
Решение: универсальные функции NumPy
В отличие list языка Python, массив NumPy — это объект, созданный на основе массива C. Доступ к элементу в NumPy не требует шагов для проверки типов. Это даёт нам намёк на решение, а именно на Universal Functions (универсальные функции) NumPy, или UFunc.
Если вкратце, благодаря UFunc мы можем проделывать арифметические операции непосредственно с целым массивом. Перепишем первый медленный пример на Python в версию на UFunc, она будет выглядеть так:
import numpy as np
np.random.seed(0)
values = np.random.randint(1, 100, size=1000000)
%timeit result = 1.0/values
Это преобразование не только повышает скорость, но и укорачивает код. Отгадаете, сколько теперь времени занимает его выполнение? 2,7 мс — быстрее, чем все упомянутые выше языки:
2,71 мс ± 50,8 мкс на цикл (среднее значение ± стандартное отклонение после =7 прогонов по 100 циклов каждый)
Вернёмся к коду: самое важное здесь — это 1.0/values. values — это не число, а массив NumPy. Наряду с оператором деления есть множество других.
Здесь можно найти все операторы Ufunc.
Подводим итог
Если вы пользуетесь Python, то высока вероятность того, что вы работаете с данными и числами. Эти данные можно хранить в NumPy или DataFrame библиотеки Pandas, поскольку DataFrame реализован на основе NumPy. То есть с ним тоже работает Ufunc.
UFunc позволяет нам выполнять в Python повторяющиеся операции быстрее на порядки величин. Самый медленный Python может быть даже быстрее языка C. И это здорово.
Приложение — код тестов на C, C#, Java и NodeJS
Язык C:
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
int main(){
struct timeval stop, start;
int length = 1000000;
int rand_array[length];
float output_array[length];
for(int i = 0; i<length; i++){
rand_array[i] = rand();
}
gettimeofday(&start, NULL);
for(int i = 0; i<length; i++){
output_array[i] = 1.0/(rand_array[i]*1.0);
}
gettimeofday(&stop, NULL);
printf("took %lu us\n", (stop.tv_sec - start.tv_sec) * 1000000 + stop.tv_usec - start.tv_usec);
printf("done\n");
return 0;
}
C#(dotnet 5.0):
using System;
namespace speed_test{
class Program{
static void Main(string[] args){
int length = 1000000;
double[] rand_array =new double[length];
double[] output = new double[length];
var rand = new Random();
for(int i =0; i<length;i++){
rand_array[i] = rand.Next();
//Console.WriteLine(rand_array[i]);
}
long start = DateTimeOffset.Now.ToUnixTimeMilliseconds();
for(int i =0;i<length;i++){
output[i] = 1.0/rand_array[i];
}
long end = DateTimeOffset.Now.ToUnixTimeMilliseconds();
Console.WriteLine(end - start);
}
}
}
Java:
import java.util.Random;
public class speed_test {
public static void main(String[] args){
int length = 1000000;
long[] rand_array = new long[length];
double[] output = new double[length];
Random rand = new Random ();
for(int i =0; i<length; i++){
rand_array[i] = rand.nextLong();
}
long start = System.currentTimeMillis();
for(int i = 0;i<length; i++){
output[i] = 1.0/rand_array[i];
}
long end = System.currentTimeMillis();
System.out.println(end - start);
}
}
NodeJS:
let length = 1000000;
let rand_array = [];
let output = [];
for(var i=0;i<length;i++){
rand_array[i] = Math.floor(Math.random()*10000000);
}
let start = (new Date()).getMilliseconds();
for(var i=0;i<length;i++){
output[i] = 1.0/rand_array[i];
}
let end = (new Date()).getMilliseconds();
console.log(end - start);
На правах рекламы
Воплощайте любые идеи и проекты с помощью наших VDS с мгновенной активацией на Linux или Windows. Создавайте собственный конфиг в течение минуты!
оригинал
===========
Источник:
habr.com
===========
===========
Автор оригинала: Andrew Zhu
===========Похожие новости:
- [Программирование, DevOps] 20 лучших практик по работе с Docker-файлами (перевод)
- [Программирование микроконтроллеров, Разработка под Arduino, 3D-принтеры, DIY или Сделай сам] MIDI браслет для управления синтезаторами (в основном — для органично звучащего вибрато)
- [PHP, Программирование] arm64 vs x86_64 для php (перевод)
- [Программирование, Java, Проектирование и рефакторинг] Паттерн проектирования Builder (Строитель) в Java (перевод)
- [Python, Программирование, Интерфейсы, DIY или Сделай сам] Что не так с вашей консольной программой?
- [JavaScript, Программирование, ReactJS, Учебный процесс в IT] React: наглядное пособие для начинающих. Создаем свой компонент без знаний JavaScript (перевод)
- [Python, JavaScript, Программирование, Учебный процесс в IT] Ontol: подборка видео-лекций и каналов для продвинутых программистов
- [Программирование, Prolog] Логическое программирование на Prolog для чайников
- [Программирование, jQuery] Сборники рецептов jq
- [Python, Беспроводные технологии] ModulationPy: цифровые схемы модуляции на языке Python
Теги для поиска: #_python, #_programmirovanie (Программирование), #_python, #_skorost_vypolnenija (скорость выполнения), #_blog_kompanii_vdsina.ru (
Блог компании VDSina.ru
), #_python, #_programmirovanie (
Программирование
)
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 25-Ноя 11:25
Часовой пояс: UTC + 5
Автор | Сообщение |
---|---|
news_bot ®
Стаж: 6 лет 9 месяцев |
|
Обычно говорят, что Python очень медленный В любых соревнованиях по скорости выполнения программ Python обычно занимает последние места. Кто-то говорит, что это из-за того, что Python является интерпретируемым языком. Все интерпретируемые языки медленные. Но мы знаем, что Java тоже язык такого типа, её байткод интерпретируется JVM. Как показано, в этом бенчмарке, Java намного быстрее, чем Python. Вот пример, способный показать медленность Python. Используем традиционный цикл for для получения обратных величин: import numpy as np
np.random.seed(0) values = np.random.randint(1, 100, size=1000000) def get_reciprocal(values): output = np.empty(len(values)) for i in range(len(values)): output[i] = 1.0/values[i] %timeit get_reciprocal(values) Результат: 3,37 с ± 582 мс на цикл (среднее значение ± стандартное отклонение после 7 прогонов по 1 циклу)
Ничего себе, на вычисление всего 1 000 000 обратных величин требуется 3,37 с. Та же логика на C выполняется за считанные мгновения: 9 мс; C# требуется 19 мс; Nodejs требуется 26 мс; Java требуется 5 мс(!), а Python требуется аж целых 3,37 СЕКУНДЫ. (Весь код тестов приведён в конце). Первопричина такой медленности Обычно мы называем Python языком программирования с динамической типизацией. В программе на Python всё представляет собой объекты; иными словами, каждый раз, когда код на Python обрабатывает данные, ему нужно распаковывать обёртку объекта. Внутри цикла for каждой итерации требуется распаковывать объекты, проверять тип и вычислять обратную величину. Все эти 3 секунды тратятся на проверку типов. В отличие от традиционных языков наподобие C, где доступ к данным осуществляется напрямую, в Python множество тактов ЦП используется для проверки типа. Даже простое присвоение числового значения — это долгий процесс. a = 1
Шаг 1. Задаём a->PyObject_HEAD->typecode тип integer Шаг 2. Присваиваем a->val =1 Подробнее о том, почему Python медленный, стоит прочитать в чудесной статье Джейка: Why Python is Slow: Looking Under the Hood Итак, существует ли способ, позволяющий обойти проверку типов, а значит, и повысить производительность? Решение: универсальные функции NumPy В отличие list языка Python, массив NumPy — это объект, созданный на основе массива C. Доступ к элементу в NumPy не требует шагов для проверки типов. Это даёт нам намёк на решение, а именно на Universal Functions (универсальные функции) NumPy, или UFunc. Если вкратце, благодаря UFunc мы можем проделывать арифметические операции непосредственно с целым массивом. Перепишем первый медленный пример на Python в версию на UFunc, она будет выглядеть так: import numpy as np
np.random.seed(0) values = np.random.randint(1, 100, size=1000000) %timeit result = 1.0/values Это преобразование не только повышает скорость, но и укорачивает код. Отгадаете, сколько теперь времени занимает его выполнение? 2,7 мс — быстрее, чем все упомянутые выше языки: 2,71 мс ± 50,8 мкс на цикл (среднее значение ± стандартное отклонение после =7 прогонов по 100 циклов каждый)
Вернёмся к коду: самое важное здесь — это 1.0/values. values — это не число, а массив NumPy. Наряду с оператором деления есть множество других. Здесь можно найти все операторы Ufunc. Подводим итог Если вы пользуетесь Python, то высока вероятность того, что вы работаете с данными и числами. Эти данные можно хранить в NumPy или DataFrame библиотеки Pandas, поскольку DataFrame реализован на основе NumPy. То есть с ним тоже работает Ufunc. UFunc позволяет нам выполнять в Python повторяющиеся операции быстрее на порядки величин. Самый медленный Python может быть даже быстрее языка C. И это здорово. Приложение — код тестов на C, C#, Java и NodeJS Язык C: #include <stdio.h>
#include <stdlib.h> #include <sys/time.h> int main(){ struct timeval stop, start; int length = 1000000; int rand_array[length]; float output_array[length]; for(int i = 0; i<length; i++){ rand_array[i] = rand(); } gettimeofday(&start, NULL); for(int i = 0; i<length; i++){ output_array[i] = 1.0/(rand_array[i]*1.0); } gettimeofday(&stop, NULL); printf("took %lu us\n", (stop.tv_sec - start.tv_sec) * 1000000 + stop.tv_usec - start.tv_usec); printf("done\n"); return 0; } C#(dotnet 5.0): using System;
namespace speed_test{ class Program{ static void Main(string[] args){ int length = 1000000; double[] rand_array =new double[length]; double[] output = new double[length]; var rand = new Random(); for(int i =0; i<length;i++){ rand_array[i] = rand.Next(); //Console.WriteLine(rand_array[i]); } long start = DateTimeOffset.Now.ToUnixTimeMilliseconds(); for(int i =0;i<length;i++){ output[i] = 1.0/rand_array[i]; } long end = DateTimeOffset.Now.ToUnixTimeMilliseconds(); Console.WriteLine(end - start); } } } Java: import java.util.Random;
public class speed_test { public static void main(String[] args){ int length = 1000000; long[] rand_array = new long[length]; double[] output = new double[length]; Random rand = new Random (); for(int i =0; i<length; i++){ rand_array[i] = rand.nextLong(); } long start = System.currentTimeMillis(); for(int i = 0;i<length; i++){ output[i] = 1.0/rand_array[i]; } long end = System.currentTimeMillis(); System.out.println(end - start); } } NodeJS: let length = 1000000;
let rand_array = []; let output = []; for(var i=0;i<length;i++){ rand_array[i] = Math.floor(Math.random()*10000000); } let start = (new Date()).getMilliseconds(); for(var i=0;i<length;i++){ output[i] = 1.0/rand_array[i]; } let end = (new Date()).getMilliseconds(); console.log(end - start); На правах рекламы Воплощайте любые идеи и проекты с помощью наших VDS с мгновенной активацией на Linux или Windows. Создавайте собственный конфиг в течение минуты! оригинал =========== Источник: habr.com =========== =========== Автор оригинала: Andrew Zhu ===========Похожие новости:
Блог компании VDSina.ru ), #_python, #_programmirovanie ( Программирование ) |
|
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 25-Ноя 11:25
Часовой пояс: UTC + 5