[Разработка игр, Машинное обучение, Искусственный интеллект] Преобразуем графику Fortnite в PUBG новым более быстрым подходом (перевод)
Автор
Сообщение
news_bot ®
Стаж: 6 лет 9 месяцев
Сообщений: 27286
Извините, данный ресурс не поддреживается. :( Пару лет назад я показал, как мы можем использовать ИИ для переноса стилей, такой как CycleGAN, для преобразования графики одной игры, чтобы она выглядела похожей на другую, на примере Fortnite в PUBG. Этот проект до сих пор остается одним из самых просматриваемых, и спустя два года он все еще привлекает новых зрителей. Это означает, что это направление исследований в области ИИ вызывает большой интерес, но, к сожалению, мы пока не видим больших подвижек по превращению таких прототипов в реальность. Хотя и были представлены версии этого ИИ, работающиее на более высоком разрешении, они нуждались в использованию нескольких графических процессоров для обучения, что является непрактичным для использования в реальном мире.К счастью, по прошествии большого количества времени у нас наконец-то есть статья, демонстрирующая значительный прогресс в попытке уменьшить вычислительную мощность, необходимую для обучения этого ИИ. Статья от Калифорнийского университета в Беркли и Adobe называется «Contrastive Learning (контрастное обучение) для непарного преобразования изображений» (CUT).
Графика Fortnite преобразована в PUBG с помощью CUT.Используя тот же набор данных и то же самое аппаратное обеспечение с тем же графическим процессором, которое я использовал в прошлый раз, эта новая модель позволила мне перейти с разрешения 256p до 400p для синтезированных изображений. Более того, мне понадобилось чуть меньше чем за 2 часа на обучение модели, по сравнению с 8+ часами в прошлый раз.CycleGAN и Patchwise Contrastive Framework.Наблюдается существенная разница в количестве требуемых вычислительных мощностей по сравнению с CycleGAN. Итак, чем отличается этот подход от CycleGAN? Теперь он использует фреймворк Patchwise Contrastive Learning, который требует значительно меньше графической памяти и вычислений по сравнению с CycleGAN.
Сети CycleGANГенерирующая сеть обучается конвертировать изображение Fortnite в PUBG. Если вы помните, в CycleGAN мы создали бы еще одну сеть, которая пытается преобразовать PUBG в Fortnite для расчета погрешности реконструкции, и это создает огромные накладные расходы с точки зрения требований к мощности графического процессора и памяти.
А здесь мы используем Contrastive Loss (контрастную потерю). Во-первых, вместо того, чтобы работать со всеми изображениями сразу, этот метод фокусируется на извлечении фрагментов из входных и выходных изображений. Задача нашей модели здесь - определить, какой из нескольких входных ключей является положительным совпадением с нашим проверочным фрагментом, полученным из синтезированного изображения. Это называется Contrastive Learning, и это позволяет модели обучаться лучшему представлению признаков с помощью самоконтроля.Сравнение с CycleGANЭтот новый подход является причиной того, что синтезированные с помощью этого метода изображения имеют более четкие границы разделения объектов и сохраняет больше информации из исходного изображения после преобразования.
И помните, все это еще и имеет меньшие требования к графическому процессору, так что это просто фантастика! Чтобы узнать больше о результатах этой статьи на других наборах данных, посетите страницу этого проекта.Полезные ссылки
- Полный текст статьи(PDF)
- Страница проекта
- Код (GitHub)
Спасибо за внимание. Если вам понравилась эта статья, вы можете следить за другими моими работами на Medium, GitHub или подписаться на мой YouTube-канал.
Перевод материала подготовлен в преддверии старта курса "Компьютерное зрение" от OTUS. Если вы заинтересованы в обучении по данному направлению, рекомендуем посмотреть запись дня открытых дверей, в рамках которого мы подробно рассказываем о процессе обучения, а также приглашаем всех желающих записаться на бесплатный демо-урок по теме: "Компьютерное зрение в спортивной аналитике". - УЗНАТЬ О КУРСЕ ПОДРОБНЕЕ - ЗАПИСАТЬСЯ НА ДЕМО-УРОК
===========
Источник:
habr.com
===========
===========
Автор оригинала: Chintan Trivedi
===========Похожие новости:
- [Конференции] 24 апреля пройдет онлайн-конференция OTUS FEST для Middle специалистов
- [Математика, Машинное обучение, История IT, Искусственный интеллект, Мозг] Мозг, смысл и конец света
- [Тестирование IT-систем, Читальный зал] 14 самых вдохновляющих статей о тестировании ПО, которые я когда-либо читал (перевод)
- [Разработка игр, C#, Unity] Синтезатор на Unity 3D
- [Машинное обучение, Научно-популярное, Искусственный интеллект] Как машины учатся эмоциональному поведению
- [Информационная безопасность, Open source, GitHub, Машинное обучение, IT-компании] Microsoft представила симулятор кибератак с машинным обучением
- [Искусственный интеллект, Криптовалюты] Децентрализованный Искусственный интеллект
- [Информационная безопасность, Софт] Мониторинг эксплойтов
- [Работа с 3D-графикой, Разработка игр, Дизайн игр, Игры и игровые приставки] От эскиза до релиза: пайплайн регулярного создания контента на примере идеи для оружия от игрока
- [Управление проектами, Управление персоналом] Простая жизнь людей (перевод)
Теги для поиска: #_razrabotka_igr (Разработка игр), #_mashinnoe_obuchenie (Машинное обучение), #_iskusstvennyj_intellekt (Искусственный интеллект), #_deep_learning, #_computer_vision, #_gamedev, #_blog_kompanii_otus (
Блог компании OTUS
), #_razrabotka_igr (
Разработка игр
), #_mashinnoe_obuchenie (
Машинное обучение
), #_iskusstvennyj_intellekt (
Искусственный интеллект
)
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 18:21
Часовой пояс: UTC + 5
Автор | Сообщение |
---|---|
news_bot ®
Стаж: 6 лет 9 месяцев |
|
Извините, данный ресурс не поддреживается. :( Пару лет назад я показал, как мы можем использовать ИИ для переноса стилей, такой как CycleGAN, для преобразования графики одной игры, чтобы она выглядела похожей на другую, на примере Fortnite в PUBG. Этот проект до сих пор остается одним из самых просматриваемых, и спустя два года он все еще привлекает новых зрителей. Это означает, что это направление исследований в области ИИ вызывает большой интерес, но, к сожалению, мы пока не видим больших подвижек по превращению таких прототипов в реальность. Хотя и были представлены версии этого ИИ, работающиее на более высоком разрешении, они нуждались в использованию нескольких графических процессоров для обучения, что является непрактичным для использования в реальном мире.К счастью, по прошествии большого количества времени у нас наконец-то есть статья, демонстрирующая значительный прогресс в попытке уменьшить вычислительную мощность, необходимую для обучения этого ИИ. Статья от Калифорнийского университета в Беркли и Adobe называется «Contrastive Learning (контрастное обучение) для непарного преобразования изображений» (CUT). Графика Fortnite преобразована в PUBG с помощью CUT.Используя тот же набор данных и то же самое аппаратное обеспечение с тем же графическим процессором, которое я использовал в прошлый раз, эта новая модель позволила мне перейти с разрешения 256p до 400p для синтезированных изображений. Более того, мне понадобилось чуть меньше чем за 2 часа на обучение модели, по сравнению с 8+ часами в прошлый раз.CycleGAN и Patchwise Contrastive Framework.Наблюдается существенная разница в количестве требуемых вычислительных мощностей по сравнению с CycleGAN. Итак, чем отличается этот подход от CycleGAN? Теперь он использует фреймворк Patchwise Contrastive Learning, который требует значительно меньше графической памяти и вычислений по сравнению с CycleGAN. Сети CycleGANГенерирующая сеть обучается конвертировать изображение Fortnite в PUBG. Если вы помните, в CycleGAN мы создали бы еще одну сеть, которая пытается преобразовать PUBG в Fortnite для расчета погрешности реконструкции, и это создает огромные накладные расходы с точки зрения требований к мощности графического процессора и памяти. А здесь мы используем Contrastive Loss (контрастную потерю). Во-первых, вместо того, чтобы работать со всеми изображениями сразу, этот метод фокусируется на извлечении фрагментов из входных и выходных изображений. Задача нашей модели здесь - определить, какой из нескольких входных ключей является положительным совпадением с нашим проверочным фрагментом, полученным из синтезированного изображения. Это называется Contrastive Learning, и это позволяет модели обучаться лучшему представлению признаков с помощью самоконтроля.Сравнение с CycleGANЭтот новый подход является причиной того, что синтезированные с помощью этого метода изображения имеют более четкие границы разделения объектов и сохраняет больше информации из исходного изображения после преобразования. И помните, все это еще и имеет меньшие требования к графическому процессору, так что это просто фантастика! Чтобы узнать больше о результатах этой статьи на других наборах данных, посетите страницу этого проекта.Полезные ссылки
Перевод материала подготовлен в преддверии старта курса "Компьютерное зрение" от OTUS. Если вы заинтересованы в обучении по данному направлению, рекомендуем посмотреть запись дня открытых дверей, в рамках которого мы подробно рассказываем о процессе обучения, а также приглашаем всех желающих записаться на бесплатный демо-урок по теме: "Компьютерное зрение в спортивной аналитике". - УЗНАТЬ О КУРСЕ ПОДРОБНЕЕ - ЗАПИСАТЬСЯ НА ДЕМО-УРОК
=========== Источник: habr.com =========== =========== Автор оригинала: Chintan Trivedi ===========Похожие новости:
Блог компании OTUS ), #_razrabotka_igr ( Разработка игр ), #_mashinnoe_obuchenie ( Машинное обучение ), #_iskusstvennyj_intellekt ( Искусственный интеллект ) |
|
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 18:21
Часовой пояс: UTC + 5