[Алгоритмы, Машинное обучение] Машинный анализатор. Часть 1. Волновые нейроны

Автор Сообщение
news_bot ®

Стаж: 6 лет 9 месяцев
Сообщений: 27286

Создавать темы news_bot ® написал(а)
12-Авг-2020 16:39


Вступление
В этой и последующих статьях я объясню работу волновых частиц, которые могут переходить из неактивных состояний в активные.Также я опишу их состояния и память, которую можно организовать на основе считывания переходов данных частиц. Поскольку частицы могут активироваться при некотором воздействии извне и распространяются в виде волны, то я назвал их волновыми нейронами.
Для начала рассмотрим модель нейрона мозга человека, и разберем его на ряд понятных компонентов.
Нейрон состоит из тела, дендритов и аксона. Дендриты подают входные сигналы в тело нейрона, аксон подает выход для сигналов нейрона. Само тело(ядро) нейрона накапливает входящие с дендритов(входов) сигналы, и в случае накопления какого-либо критического значения подает сигнал на аксон(выход).
Предположение
Предположим, что у нас есть холст, на котором, мы может отмечать пиксели только трех типов. К примеру это могут быть пиксели черного, белого и красного цветов. Предположим, что пиксели черного цвета представляют собой нейроны, бывшие активными, на данный момент неактивные. Красные пиксели — представляют собой пиксели, которые на данный момент активны(активные нейроны). И черные пиксели — нейроны неактивные.
Мы сканируем весь холст в целях поиска активных нейронов(красных пикселов).Нужно написать условие активации этих нейронов. Предположим, что вокруг неактивных(белых) нейронов имеется 8 клеток(нейронов), к которым подключены «дендриты»- входные сигналы.
Если вокруг белой клетки образуется какое — либо количество черных нейронов, и это количество черных нейронов больше установленного нами порогового значения, того мы окрашивает белую клетку в красный цвет.
Нужно выбрать условие окрашивания клетки в красный цвет. Поскольку вокруг белой клетки 8 нейронов, то и выбирать мы может также от 0 до 7.Если выберем 0 — ничего не произойдет. Нужно выбирать от 1 до 7.Если выбрать 1, то вокруг черного изображения возникнет красный сплошной контур. Если выбрать 2 или 3 то также будет получаться контур, однако не сплошной, эти значения активации не интeресны. Если выбрать значение 4, то получим интересный результат. Программа будет любые вогнутые изображения превращать в выпуклые.
Результаты
Нейроны активируются, если рядом один или более неактивных нейронов

Изображение

SPL

Нейроны активируются, если рядом четыре или более неактивных нейронов

Изображение

SPL

Разрушение изображения
Предположим, что у нас есть сложное изображение с большим количеством цветов. Мы будем преобразовывать RGB значение цвета в целочисленное значение и находить максимальное значение этого цвета. Потом мы сделаем фрагмент этого изображения прозрачным и снова найдем максимальное значение  RGB цвета на картинке, не включая прозрачные пиксели и найденным цветом заполним прозрачную область изображение.
То есть мы удаляем некую область цвета и заменяем ее другим цветом. Тем самым, на изображение мы удаляем цвета один за другим, «разрушая» изображение. Также мы можем сохранить изобрaжение, которое мы заменяем в черно — белом представлении.
Результаты
Людям с эпилепсией не смотреть

Уничтожение изображения

SPL

Создание черно-белого изображения

SPL

Зачем я рассказал про уничтожение изображения? При описании изображения можно описать цветное изображение последовательностью черно-белых(бинарных) изображения, и их позже подробно описать.
Спасибо за чтение публикации
===========
Источник:
habr.com
===========

Похожие новости: Теги для поиска: #_algoritmy (Алгоритмы), #_mashinnoe_obuchenie (Машинное обучение), #_mashinnyjanalizator (МашинныйАнализатор), #_ii (ии), #_algoritmy (
Алгоритмы
)
, #_mashinnoe_obuchenie (
Машинное обучение
)
Профиль  ЛС 
Показать сообщения:     

Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы

Текущее время: 25-Ноя 16:22
Часовой пояс: UTC + 5