[Big Data, Data Mining, Карьера в IT-индустрии] Data Analyst или Data Scientist — кем бы вам хотелось быть?
Автор
Сообщение
news_bot ®
Стаж: 6 лет 9 месяцев
Сообщений: 27286
Каково находиться в каждой из этих ролей, рассказывает Matt Przybyla, автор статьи, опубликованной в блоге towardsdatascience.com. Предлагаем вам ее перевод.
Фото с сайта Unsplash. Автор: Christina @ wocintechchat.com
Мне довелось поработать и профессиональным аналитиком данных (Data Analyst), и исследователем данных (Data Scientist). Думаю, было бы полезно поделиться опытом по каждой должности, указывая ключевые различия в повседневных задачах. Я надеюсь, что моя статья поможет определиться, что подходит именно вам. А тем, кто уже работает, возможно, после прочтения захочется изменить свою должность. Некоторые начинают аналитиками данных, а затем переходят в исследователи. Не так популярен, но не менее интересен путь от исследователя на невысоких позициях до аналитика на позиции сеньора. Обе должности имеют свои особенности и требуют определенных умений, о которых необходимо знать, прежде чем сделать следующий большой шаг в профессиональном развитии.
Ниже я, опираясь на свой опыт, расскажу, что такое быть аналитиком данных и исследователем данных, и подробно отвечу на наиболее частые вопросы о каждой позиции.
Data Analyst
Если вы хотите описывать данные за прошедший период или текущий момент и презентовать стейкхолдерам ключевые результаты поиска, полную визуализацию изменений и тенденций, значит, вам подходит позиция аналитика данных. У упомянутых должностей есть общие черты, которые я описывал в другой статье, охватывающей сходства и различия между необходимыми для этих позиций навыками. Сейчас же я хочу показать, как роль аналитика данных в сравнении с ролью исследователя данных ощущается. Очень важно понимать, чего ждать этим специалистам в их повседневной работе. Аналитик будет взаимодействовать с разными людьми, много общаться и поддерживать высокий темп выполнения задач — выше, чем требуется от исследователя данных.
Поэтому впечатления, получаемые на каждой из должностей, могут сильно различаться.
Ниже вы найдете ответы на самые частые вопросы о том, с чем сталкиваются аналитики данных.
- С кем придется работать?
В основном со стейкхолдерами компании, которые запрашивают обобщение данных, визуализацию выводов и отчеты по результатам. Общение, как правило, устное или через цифровые каналы: электронную почту, Slack и Jira. По моему опыту, вам предстоит тесно взаимодействовать с человеческой и аналитической составляющими бизнеса, а не инженерной и производственной.
- Кому предоставляются результаты?
Вероятнее всего, вышеупомянутым стейкхолдерам. Однако если у вас есть менеджер, вы отчитываетесь перед ним, а он уже передает данные стейкхолдерам. Не исключен и вариант, когда вы собираете пул запросов, составляете по ним отчет и презентуете стейкхолдерам. Для составления отчетов у вас могут быть такие инструменты, как Tableau, Google Data Studio, Power BI и Salesforce, которые обеспечивают легкий доступ к данным, например к файлам CSV. Другие инструменты требуют больше технических усилий — составления расширенных запросов к базам данных с помощью SQL.
- Какими будут темпы работы над проектом?
Значительно выше, чем у исследователей данных. Вы можете подготавливать несколько пулов данных (запросов) или отчетов ежедневно и крупные презентации с выводами еженедельно. Поскольку вы не строите модели и не составляете прогнозы (обычно), а результаты скорее описательные и ситуативные, работа идет быстрее.
Data Scientist
Исследователи данных довольно сильно отличаются от аналитиков данных. Они могут использовать одинаковые инструменты и языки, но исследователю приходится работать с другими людьми, над более крупными проектами (такими как создание и внедрение модели машинного обучения) и тратить на это больше времени. Аналитики данных обычно работают над своими проектами самостоятельно: например, использовать панель Tableau для презентации результатов может и один человек. Исследователи данных вправе привлекать нескольких инженеров и менеджеров по продукту для эффективного выполнения бизнес-задач с использованием правильных инструментов и качественных решений.
- С кем придется работать?
В отличие от аналитика данных, вам предстоит взаимодействовать со стейкхолдерами только по некоторым вопросам, по другим же, связанным с моделями и результатами их использования вопросам вы будете обращаться к инженерам данных, инженерам по программному обеспечению и менеджерам по продукту.
- Кому предоставляются результаты?
Вы можете делиться ими со стейкхолдерами, а также с инженерами, которым важно иметь представление о готовом продукте, чтобы, например, разработать UI (пользовательский интерфейс) в соответствии с вашими прогнозами.
- Какими будут темпы работы над проектом?
Вероятно, самая большая разница в восприятии и функционировании этих должностей заключается в количестве времени на каждый проект. Скорость работы аналитиков данных довольно высока, а исследователям данных могут потребоваться недели или даже месяцы для завершения проекта. Разработка моделей и подготовка проектов исследователя данных — это долгие процессы, поскольку они включают сбор данных, разведочный анализ данных, создание основной модели, итерирование, настройку модели и извлечение результатов.
Заключение
Фото с сайта Unsplash. Автор: Markus Winkler
Аналитики и исследователи данных пользуются одинаковыми инструментами, такими как Tableau, SQL и даже Python, но профессиональные задачи у них могут быть очень разными. Повседневная деятельность аналитика данных включает больше собраний и личного взаимодействия, требует прокачанных софт-скиллов и быстрого выполнения проектов. Работа исследователя предполагает более долгие процессы, общение с инженерами и менеджерами по продуктам, а также построение прогностических моделей, осмысляющих новые данные или явления в их развитии, тогда как аналитики фокусируются на прошлом и текущем состоянии.
Надеюсь, статья была интересной и полезной. Спасибо за внимание!
===========
Источник:
habr.com
===========
Похожие новости:
- [GTD, Карьера в IT-индустрии, Учебный процесс в IT] Как изучать Machine Learning каждый день 9 месяцев подряд (перевод)
- [Big Data, PostgreSQL, Администрирование баз данных, Хранение данных] Видео @Databases Meetup: Percona, Postgres Pro, Tarantool и MCS
- [Data Mining, ВКонтакте API, Статистика в IT] Парадокс дней рождений на данных ВКонтакте
- [Управление разработкой, Управление проектами, Развитие стартапа, Управление продуктом, Карьера в IT-индустрии] Зачем разработчику знать о продакт-менеджменте?
- [Учебный процесс в IT, Карьера в IT-индустрии, Интервью] Динамическое обучение и его принципы (перевод)
- [Big Data, Data Mining, Машинное обучение, Разработка под e-commerce] Лучшие data-продукты рождаются в полях
- [Карьера в IT-индустрии, Разработка веб-сайтов, Управление персоналом, Управление проектами] Как работать с джуниорами?
- [IT-компании, Карьера в IT-индустрии] Предвзятый и субъективный взгляд на резюме разработчика
- [Big Data, Data Mining] Большие данные: 70 невероятных бесплатных источников данных, которые вы должны знать к 2020 году
- [Data Mining, R, Математика] Пакеты-пакеты-пакеты… Насколько эффективно вы используете R?
Теги для поиска: #_big_data, #_data_mining, #_karera_v_itindustrii (Карьера в IT-индустрии), #_data_scientist, #_data_analyst, #_professii_v_it (профессии в it), #_professii_buduschego (профессии будущего), #_novichkam_it (новичкам ит), #_novichkam (новичкам), #_professionalnoe_razvitie (профессиональное развитие), #_analitika_dannyh (аналитика данных), #_blog_kompanii_plarium (
Блог компании Plarium
), #_big_data, #_data_mining, #_karera_v_itindustrii (
Карьера в IT-индустрии
)
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 23-Ноя 00:17
Часовой пояс: UTC + 5
Автор | Сообщение |
---|---|
news_bot ®
Стаж: 6 лет 9 месяцев |
|
Каково находиться в каждой из этих ролей, рассказывает Matt Przybyla, автор статьи, опубликованной в блоге towardsdatascience.com. Предлагаем вам ее перевод. Фото с сайта Unsplash. Автор: Christina @ wocintechchat.com Мне довелось поработать и профессиональным аналитиком данных (Data Analyst), и исследователем данных (Data Scientist). Думаю, было бы полезно поделиться опытом по каждой должности, указывая ключевые различия в повседневных задачах. Я надеюсь, что моя статья поможет определиться, что подходит именно вам. А тем, кто уже работает, возможно, после прочтения захочется изменить свою должность. Некоторые начинают аналитиками данных, а затем переходят в исследователи. Не так популярен, но не менее интересен путь от исследователя на невысоких позициях до аналитика на позиции сеньора. Обе должности имеют свои особенности и требуют определенных умений, о которых необходимо знать, прежде чем сделать следующий большой шаг в профессиональном развитии. Ниже я, опираясь на свой опыт, расскажу, что такое быть аналитиком данных и исследователем данных, и подробно отвечу на наиболее частые вопросы о каждой позиции. Data Analyst Если вы хотите описывать данные за прошедший период или текущий момент и презентовать стейкхолдерам ключевые результаты поиска, полную визуализацию изменений и тенденций, значит, вам подходит позиция аналитика данных. У упомянутых должностей есть общие черты, которые я описывал в другой статье, охватывающей сходства и различия между необходимыми для этих позиций навыками. Сейчас же я хочу показать, как роль аналитика данных в сравнении с ролью исследователя данных ощущается. Очень важно понимать, чего ждать этим специалистам в их повседневной работе. Аналитик будет взаимодействовать с разными людьми, много общаться и поддерживать высокий темп выполнения задач — выше, чем требуется от исследователя данных. Поэтому впечатления, получаемые на каждой из должностей, могут сильно различаться.
Ниже вы найдете ответы на самые частые вопросы о том, с чем сталкиваются аналитики данных.
В основном со стейкхолдерами компании, которые запрашивают обобщение данных, визуализацию выводов и отчеты по результатам. Общение, как правило, устное или через цифровые каналы: электронную почту, Slack и Jira. По моему опыту, вам предстоит тесно взаимодействовать с человеческой и аналитической составляющими бизнеса, а не инженерной и производственной.
Вероятнее всего, вышеупомянутым стейкхолдерам. Однако если у вас есть менеджер, вы отчитываетесь перед ним, а он уже передает данные стейкхолдерам. Не исключен и вариант, когда вы собираете пул запросов, составляете по ним отчет и презентуете стейкхолдерам. Для составления отчетов у вас могут быть такие инструменты, как Tableau, Google Data Studio, Power BI и Salesforce, которые обеспечивают легкий доступ к данным, например к файлам CSV. Другие инструменты требуют больше технических усилий — составления расширенных запросов к базам данных с помощью SQL.
Значительно выше, чем у исследователей данных. Вы можете подготавливать несколько пулов данных (запросов) или отчетов ежедневно и крупные презентации с выводами еженедельно. Поскольку вы не строите модели и не составляете прогнозы (обычно), а результаты скорее описательные и ситуативные, работа идет быстрее. Data Scientist Исследователи данных довольно сильно отличаются от аналитиков данных. Они могут использовать одинаковые инструменты и языки, но исследователю приходится работать с другими людьми, над более крупными проектами (такими как создание и внедрение модели машинного обучения) и тратить на это больше времени. Аналитики данных обычно работают над своими проектами самостоятельно: например, использовать панель Tableau для презентации результатов может и один человек. Исследователи данных вправе привлекать нескольких инженеров и менеджеров по продукту для эффективного выполнения бизнес-задач с использованием правильных инструментов и качественных решений.
В отличие от аналитика данных, вам предстоит взаимодействовать со стейкхолдерами только по некоторым вопросам, по другим же, связанным с моделями и результатами их использования вопросам вы будете обращаться к инженерам данных, инженерам по программному обеспечению и менеджерам по продукту.
Вы можете делиться ими со стейкхолдерами, а также с инженерами, которым важно иметь представление о готовом продукте, чтобы, например, разработать UI (пользовательский интерфейс) в соответствии с вашими прогнозами.
Вероятно, самая большая разница в восприятии и функционировании этих должностей заключается в количестве времени на каждый проект. Скорость работы аналитиков данных довольно высока, а исследователям данных могут потребоваться недели или даже месяцы для завершения проекта. Разработка моделей и подготовка проектов исследователя данных — это долгие процессы, поскольку они включают сбор данных, разведочный анализ данных, создание основной модели, итерирование, настройку модели и извлечение результатов. Заключение Фото с сайта Unsplash. Автор: Markus Winkler Аналитики и исследователи данных пользуются одинаковыми инструментами, такими как Tableau, SQL и даже Python, но профессиональные задачи у них могут быть очень разными. Повседневная деятельность аналитика данных включает больше собраний и личного взаимодействия, требует прокачанных софт-скиллов и быстрого выполнения проектов. Работа исследователя предполагает более долгие процессы, общение с инженерами и менеджерами по продуктам, а также построение прогностических моделей, осмысляющих новые данные или явления в их развитии, тогда как аналитики фокусируются на прошлом и текущем состоянии. Надеюсь, статья была интересной и полезной. Спасибо за внимание! =========== Источник: habr.com =========== Похожие новости:
Блог компании Plarium ), #_big_data, #_data_mining, #_karera_v_itindustrii ( Карьера в IT-индустрии ) |
|
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 23-Ноя 00:17
Часовой пояс: UTC + 5