[Машинное обучение, Научно-популярное, Учебный процесс в IT] Генеративная зоология с нейронными сетями (перевод)
Автор
Сообщение
news_bot ®
Стаж: 6 лет 9 месяцев
Сообщений: 27286
Пару лет назад в моем списке для чтения появилась статья под названием «Прогресс и развитие GAN для улучшения качества, стабильности и повышения вариации». В ней описывается постепенный рост генеративно-состязательных сетей, начинавших с создания изображений с низким разрешением и повышавших степень детализации по мере продолжения обучения. Этой теме было посвящено множество публикаций, поскольку авторы использовали свою идею для создания реалистичных и уникальных изображений человеческих лиц.
Примеры изображений, созданных GAN
Глядя на эти изображения, кажется, что другим нейронным сетям потребуется изучить множество примеров, чтобы иметь возможность создавать то, что выдают GAN. Некоторые факторы кажутся относительно простыми и обоснованными фактически – например, что цвет обоих глаз должен совпадать. Но другие аспекты фантастически сложны, и их очень трудно сформулировать. Так, например, какие детали необходимы для того, чтобы связать воедино глаза, рот и кожу в целостное изображение лица? Конечно, я говорю о статистической машине как о человеке, и наша интуиция может нас обмануть — может оказаться, что рабочих вариаций относительно мало, а пространство решений более ограничено, чем мы себе представляем. Наверное, самое интересное – это не сами образы, а то жуткое воздействие, которое они оказывают на нас.
Некоторое время спустя в моем любимом подкасте была упомянута PhyloPic — база данных силуэтных изображений животных, растений и других жизненных форм. Размышляя над этими строками, я задался вопросом – что получится, если обучить систему, вроде той, что описана в статье «Прогрессивные GAN», на очень разнообразном наборе подобных данных? Получится множество разновидностей нескольких известных типов животных, или мы получим множество вариаций, которое породит спекулятивную зоологию, управляемую нейронными сетями? Как бы все ни складывалось, я был уверен, что смогу получить из этого несколько хороших рисунков для моей учебной стены, поэтому я решил удовлетворить свое любопытство экспериментом.
Your browser does not support HTML5 video.
Я адаптировал код из статьи о прогрессивных GAN и обучил модель с помощью 12000 итераций, используя мощности Google Cloud (8 графических процессоров NVIDA K80) и весь набор данных PhyloPic. Общее время обучения, включая некоторые ошибки и эксперименты, составило 4 дня. Я использовал окончательную обученную модель для создания 50-килобайтных отдельных изображений, а затем потратил часы на просмотр результатов, категоризацию, фильтрацию и сопоставление изображений. Я также немного редактировал некоторые изображения, повернув их, чтобы все существа были направлены в одну и ту же сторону (чтобы добиться визуального удовлетворения). Этот практический подход означает, что то, что вы видите ниже – это своего рода коллаборация между мной и нейронной сетью — это была творческая работа, и я вносил в нее свои правки.
Летающие насекомые
Первое, что меня удивило, так это то, насколько эстетически приятными были результаты. Многое из этого, безусловно, является отражением хорошего вкуса художников, которые создали оригинальные изображения. Однако, были и приятные неожиданности. Например, кажется, что всякий раз, когда нейронная сеть входит в область неопределенности – будь то мелкие кусочки, которые она еще не освоила, или полеты размытой биологической фантазии — в изображении появляются хроматические аберрации. Это любопытно, потому что входной набор полностью выполнен в черно-белом цвете, а значит, цвет не может быть решением какой-либо генеративной проблемы, принятым при обучении модели. Любой цвет является чистым артефактом разума машины. Удивительно, что одним из факторов, постоянно вызывающих хроматические аберрации, являются крылья летающих насекомых. Это приводит к тому, что модель порождает сотни вариаций ярко окрашенных «бабочек», подобных представленным выше. Интересно, может ли это быть полезным наблюдением – если обучать модель, используя только черно-белые изображения, и при этом требовать вывода полноцветных изображений, то цветные пятна могут быть полезным способом для отображения областей, в которых модель не в состоянии точно отобразить тренировочный набор.
Основную часть выходных данных составляет огромное разнообразие полностью узнаваемых силуэтов — птицы, различные четвероногие, множество маленьких грациозных хищных динозавров, ящероногих, рыб, жуков, арахноидов и гуманоидов.
Птицы
Четвероногие
Динозавры
Рыбы
Жуки
Гоминиды
Странные вещи
Как только известные нам твари заканчиваются, мы встречаемся с незнакомыми вещами. Один из появившихся у меня вопросов заключался в следующем: будут ли появляться правдоподобные планы тела животных, которых в природе не существует (возможно, гибриды существ, входящих в набор входных данных)? С помощью тщательного поиска и небольшой парейдолии, я обнаружил сотни четвероногих птиц, змееголовых оленей и других фантастических чудовищ.
Чудища
Уходя еще дальше в неизвестность, модель породила странные абстрактные шаблоны и неидентифицируемые сущности, создающие некое ощущение их «живости».
Абстрактные существа
Неидентифицируемые
Случайный отбор
Чего не видно на приведенных выше изображениях, так это обилия вариаций в результатах. Я распечатал и и поместил несколько таких наборов изображений в рамки, и эффект, производимый сотней маленьких, детально прорисованных изображений, находящихся бок о бок в масштабе, довольно поразителен. Чтобы дать некоторое представление о масштабах полного набора данных, я включаю один из примеров распечатки ниже — это случайная выборка из неотфильтрованного корпуса изображений.
Узнайте подробности, как получить востребованную профессию с нуля или Level Up по навыкам и зарплате, пройдя платные онлайн-курсы SkillFactory:
- Курс по Machine Learning (12 недель)
- Обучение профессии Data Science с нуля (12 месяцев)
- Профессия аналитика с любым стартовым уровнем (9 месяцев)
- Курс «Python для веб-разработки» (9 месяцев)
Читать еще
- Тренды в Data Scienсe 2020
- Data Science умерла. Да здравствует Business Science
- Крутые Data Scientist не тратят время на статистику
- Как стать Data Scientist без онлайн-курсов
- 450 бесплатных курсов от Лиги Плюща
- Data Science для гуманитариев: что такое «data»
- Data Scienсe на стероидах: знакомство с Decision Intelligence
===========
Источник:
habr.com
===========
===========
Автор оригинала: Aldo Cortesi
===========Похожие новости:
- [Научно-популярное] Ник Бостром: Как уничтожить цивилизацию (перевод)
- [Здоровье, Лайфхаки для гиков, Научно-популярное] Как сбросить вес, не занимаясь спортом? Личный опыт
- [Программирование, Учебный процесс в IT] Как сменить свою специальность на программиста?
- [Будущее здесь, Искусственный интеллект, Научно-популярное] Последняя битва за Сингулярность
- [Математика, Научно-популярное] Бенуа Мандельброт на TED: «Фракталы и искусство изломов» (перевод)
- [IT-компании, Карьера в IT-индустрии, Управление продуктом, Управление проектами, Учебный процесс в IT] Эх, айти, куда ж ты котишься?
- [Big Data, Информационная безопасность, Машинное обучение] Расчет факторов в антифроде. Доклад Яндекса
- [IT-инфраструктура, Open source, Разработка под Linux, Учебный процесс в IT] Наши уникальные бесплатные мастер-курсы Kubernetes, CLI tool для разработчиков Odo, Java в контейнерах и много книг
- [MySQL, Python, Машинное обучение] Web server for Machine Learning 'VKF-solver'
- [Python, Учебный процесс в IT] Повелевать Web’ом с помощью Python (перевод)
Теги для поиска: #_mashinnoe_obuchenie (Машинное обучение), #_nauchnopopuljarnoe (Научно-популярное), #_uchebnyj_protsess_v_it (Учебный процесс в IT), #_gan, #_mashinnoe_obuchenie (машинное обучение), #_blog_kompanii_skillfactory (
Блог компании SkillFactory
), #_mashinnoe_obuchenie (
Машинное обучение
), #_nauchnopopuljarnoe (
Научно-популярное
), #_uchebnyj_protsess_v_it (
Учебный процесс в IT
)
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 16:41
Часовой пояс: UTC + 5
Автор | Сообщение |
---|---|
news_bot ®
Стаж: 6 лет 9 месяцев |
|
Пару лет назад в моем списке для чтения появилась статья под названием «Прогресс и развитие GAN для улучшения качества, стабильности и повышения вариации». В ней описывается постепенный рост генеративно-состязательных сетей, начинавших с создания изображений с низким разрешением и повышавших степень детализации по мере продолжения обучения. Этой теме было посвящено множество публикаций, поскольку авторы использовали свою идею для создания реалистичных и уникальных изображений человеческих лиц. Примеры изображений, созданных GAN Глядя на эти изображения, кажется, что другим нейронным сетям потребуется изучить множество примеров, чтобы иметь возможность создавать то, что выдают GAN. Некоторые факторы кажутся относительно простыми и обоснованными фактически – например, что цвет обоих глаз должен совпадать. Но другие аспекты фантастически сложны, и их очень трудно сформулировать. Так, например, какие детали необходимы для того, чтобы связать воедино глаза, рот и кожу в целостное изображение лица? Конечно, я говорю о статистической машине как о человеке, и наша интуиция может нас обмануть — может оказаться, что рабочих вариаций относительно мало, а пространство решений более ограничено, чем мы себе представляем. Наверное, самое интересное – это не сами образы, а то жуткое воздействие, которое они оказывают на нас. Некоторое время спустя в моем любимом подкасте была упомянута PhyloPic — база данных силуэтных изображений животных, растений и других жизненных форм. Размышляя над этими строками, я задался вопросом – что получится, если обучить систему, вроде той, что описана в статье «Прогрессивные GAN», на очень разнообразном наборе подобных данных? Получится множество разновидностей нескольких известных типов животных, или мы получим множество вариаций, которое породит спекулятивную зоологию, управляемую нейронными сетями? Как бы все ни складывалось, я был уверен, что смогу получить из этого несколько хороших рисунков для моей учебной стены, поэтому я решил удовлетворить свое любопытство экспериментом. Your browser does not support HTML5 video. Я адаптировал код из статьи о прогрессивных GAN и обучил модель с помощью 12000 итераций, используя мощности Google Cloud (8 графических процессоров NVIDA K80) и весь набор данных PhyloPic. Общее время обучения, включая некоторые ошибки и эксперименты, составило 4 дня. Я использовал окончательную обученную модель для создания 50-килобайтных отдельных изображений, а затем потратил часы на просмотр результатов, категоризацию, фильтрацию и сопоставление изображений. Я также немного редактировал некоторые изображения, повернув их, чтобы все существа были направлены в одну и ту же сторону (чтобы добиться визуального удовлетворения). Этот практический подход означает, что то, что вы видите ниже – это своего рода коллаборация между мной и нейронной сетью — это была творческая работа, и я вносил в нее свои правки. Летающие насекомые Первое, что меня удивило, так это то, насколько эстетически приятными были результаты. Многое из этого, безусловно, является отражением хорошего вкуса художников, которые создали оригинальные изображения. Однако, были и приятные неожиданности. Например, кажется, что всякий раз, когда нейронная сеть входит в область неопределенности – будь то мелкие кусочки, которые она еще не освоила, или полеты размытой биологической фантазии — в изображении появляются хроматические аберрации. Это любопытно, потому что входной набор полностью выполнен в черно-белом цвете, а значит, цвет не может быть решением какой-либо генеративной проблемы, принятым при обучении модели. Любой цвет является чистым артефактом разума машины. Удивительно, что одним из факторов, постоянно вызывающих хроматические аберрации, являются крылья летающих насекомых. Это приводит к тому, что модель порождает сотни вариаций ярко окрашенных «бабочек», подобных представленным выше. Интересно, может ли это быть полезным наблюдением – если обучать модель, используя только черно-белые изображения, и при этом требовать вывода полноцветных изображений, то цветные пятна могут быть полезным способом для отображения областей, в которых модель не в состоянии точно отобразить тренировочный набор. Основную часть выходных данных составляет огромное разнообразие полностью узнаваемых силуэтов — птицы, различные четвероногие, множество маленьких грациозных хищных динозавров, ящероногих, рыб, жуков, арахноидов и гуманоидов. Птицы Четвероногие Динозавры Рыбы Жуки Гоминиды Странные вещи Как только известные нам твари заканчиваются, мы встречаемся с незнакомыми вещами. Один из появившихся у меня вопросов заключался в следующем: будут ли появляться правдоподобные планы тела животных, которых в природе не существует (возможно, гибриды существ, входящих в набор входных данных)? С помощью тщательного поиска и небольшой парейдолии, я обнаружил сотни четвероногих птиц, змееголовых оленей и других фантастических чудовищ. Чудища Уходя еще дальше в неизвестность, модель породила странные абстрактные шаблоны и неидентифицируемые сущности, создающие некое ощущение их «живости». Абстрактные существа Неидентифицируемые Случайный отбор Чего не видно на приведенных выше изображениях, так это обилия вариаций в результатах. Я распечатал и и поместил несколько таких наборов изображений в рамки, и эффект, производимый сотней маленьких, детально прорисованных изображений, находящихся бок о бок в масштабе, довольно поразителен. Чтобы дать некоторое представление о масштабах полного набора данных, я включаю один из примеров распечатки ниже — это случайная выборка из неотфильтрованного корпуса изображений. Узнайте подробности, как получить востребованную профессию с нуля или Level Up по навыкам и зарплате, пройдя платные онлайн-курсы SkillFactory:
Читать еще
=========== Источник: habr.com =========== =========== Автор оригинала: Aldo Cortesi ===========Похожие новости:
Блог компании SkillFactory ), #_mashinnoe_obuchenie ( Машинное обучение ), #_nauchnopopuljarnoe ( Научно-популярное ), #_uchebnyj_protsess_v_it ( Учебный процесс в IT ) |
|
Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы
Текущее время: 22-Ноя 16:41
Часовой пояс: UTC + 5